
An Online Drinking Game

Low cost highly scalable product development on AWS

Product development is easy when all of your users are drunk

1



Dr Nick Sullivan

Ph.D. in multi-robot task allocation & 
collaborative localisation Automated haul/load analysis to reduce 

inefficiencies in mining

Automated financial analysis to reduce 
inefficiencies in lending

● Back-end developer (Python/C#)
● Algorithm design
● Automated testing

2



The Game - Death Dice

A game I’ve been playing with friends for 
many years

Roll two dice, highest value wins
● If you win three times in a row, you get 

another dice until you lose
● If you roll two of the same number, you roll 

again until you roll a different number
○ Two 1’s + {1, 2, 3}: Finish your drink 
○ Four 2’s: Hold two beers
○ Three 3’s: Have a shower

3

It caused a noticeable increase in my 
water bill

Matt, death dice player
○ Four 4’s: Put your head on the table
○ Five 5’s: Buy something from Wish.com
○ Six 6’s: Jump in a pool

● …and many more



Project Plan

TECHNOLOGY

A drunk idiot Other drunk idiots

● No market demand
● No monetisation strategy
● No budget

4



User flow

● Set your nickname
● Create a game (generates a code)
● Share game code
● Other players join using game code
● Two buttons

○ Roll dice
○ New round

5

Colour scheme 
“motivation”



Let’s get technical

6



Let’s get technical

There are manual steps to re-deploy name 
servers. Use separate terraform scripts for 
website domain and website content

7



Let’s get technical Split up the API Gateway deployment
● API Gateway needs the Lambda ARNs
● Lambda’s need the Gateway ARN

8

Run it locally, don’t fish through logs



Let’s get technical
Just throw it into one table
● Lower read/write units
● Can use transactions 

(max 25)
● Read/write consistency

9

Games / Players / Rolls
● One item containing ‘state’
● 1 Game + Players + Rolls



Dealing with concurrency
Pessimistic concurrency
● A process grabs the “talking stick” 

before it writes to the database
● More overhead
● Have to deal with services not 

returning the stick

Optimistic concurrency
● All items have a version, bumped every 

write
● If the version you were expecting is 

out-of-date, abort the write and try again
● Inefficient for high-demand resources

10



Quality assurance

Manual testing is boring. Automated 
tests are fun.

If all the tests pass, I’m confident to 
deploy.

I spin up a staging environment 
whenever I want to make a change. 
...or to remind the production 
environment how easily it can be 
replaced.

Playwright - open source browser testing library 
by Microsoft
● I’m a fan now
● Selectors can be tricky
● Pytest plugin, vscode plugin, parallelised, 

video recording, debugging, guided 
selecting etc.

● I use special names to guarantee dice rolls

11



Let’s see it!

12

100percentofthetimehotspaghetti.com

github.com/Nick-Sullivan/death-dice

Some fun stats while I prepare the demo
● Costs

○ 50c Route53 (domain)
○ 9c DynamoDB
○ 3c S3
○ + tax 

● $11 before I realised I set DynamoDB to be 
always on…

● 90 seconds to create infrastructure
● 20 seconds to destroy infrastructure

Click this

https://100percentofthetimehotspaghetti.com/
https://github.com/Nick-Sullivan/death-dice


Cheers! 🍻

13


