
Task Allocation and Collaborative

Localisation in Multi-Robot Systems

Nick Sullivan

School of Mechanical Engineering

The University of Adelaide

This thesis is submitted for the degree of

Doctor of Philosophy

July 2019

Abstract

To utilise multiple robots, it is fundamental to know what they should do, called task

allocation, and to know where the robots are, called localisation. The order that tasks

are completed in is often important, and makes task allocation difficult to solve (40

tasks have 1047 different ways of completing them). Algorithms in literature range

from fast methods that provide reasonable allocations, to slower methods that can

provide optimal allocations. These algorithms work well for systems with identical

robots, but do not utilise robot differences for superior allocations when robots are

non-identical. They also can not be applied to robots that can use different tools, where

they must consider which tools to use for each task.

Robot localisation is performed using sensors which are often assumed to always

be available. This is not the case in GPS-denied environments such as tunnels, or on

long-range missions where replacement sensors are not readily available. A promising

method to overcome this is collaborative localisation, where robots observe one

another to improve their location estimates. There has been little research on what

robot properties make collaborative localisation most effective, or how to tune systems

to make it as accurate as possible.

Most task allocation algorithms do not consider localisation as part of the alloca-

tion process. If task allocation algorithms limited inter-robot distance, collaborative

localisation can be performed during task completion. Such an algorithm could equally

ii

be used to ensure robots are within communication distance, and to quickly detect

when a robot fails. While some algorithms for this exist in literature, they provide

a weak guarantee of inter-robot distance, which is undesirable when applied to real

robots.

The aim of this thesis is to improve upon task allocation algorithms by increasing

task allocation speed and efficiency, and supporting robot tool changes. Collaborative

localisation parameters are analysed, and a task allocation algorithm that enables

collaborative localisation on real robots is developed.

This thesis includes a compendium of journal articles written by the author. The

four articles forming the main body of the thesis discuss the multi-robot task allocation

and localisation research during the author’s candidature. Two appendices are included,

representing conference articles written by the author that directly relate to the thesis.

iii

Declaration

I certify that this work contains no material which has been accepted for the award of

any other degree or diploma in my name in any university or other tertiary institution

and, to the best of my knowledge and belief, contains no material previously published

or written by another person, except where due reference has been made in the text. In

addition, I certify that no part of this work will, in the future, be used in a submission in

my name for any other degree or diploma in any university or other tertiary institution

without the prior approval of the University of Adelaide and where applicable, any

partner institution responsible for the joint award of this degree. I acknowledge that

copyright of published works contained within this thesis resides with the copyright

holder(s) of those works. I give permission for the digital version of my thesis to be

made available on the web, via the University’s digital research repository, the Library

Search and also through web search engines, unless permission has been granted by

the University to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision

of an Australian Government Research Training Program Scholarship, and from the

Commonwealth of Australia (represented by the Defence Science and Technology

Group) through a Defence Science Partnerships agreement.

Nick Sullivan, 21 Mar 2019

iv

Acknowledgements

While I have spent a considerable number of hours on this thesis, it could not have

been completed without the support of many people in my life.

An honourable mention to Ezzi Vision, for sending spam emails that continued to

thwart the spam filter despite my best efforts. Your persistence was unwanted but

admirable.

Thanks to my supervisors Steven and Ben, for knowing when to let me burrow into

my work, and when to steer me back on track.

Thanks to DST Group for helping make my research relevant to real-world problems

(and for some pocket money).

Thanks to my co-workers for the laughs and Friday afternoon drinks.

Thanks to my loved ones for their encouragement and support.

Nick

v

List of Publications Arising From This Thesis

Journals

1. Sullivan, N, Grainger, S, Cazzolato, B 2018, ‘Sequential single-item auction

improvements for heterogeneous multi-robot routing’, Robotics and Autonomous

Systems, vol 115, pp 130-142. Accepted 25 Feb 2019.

2. Sullivan, N, Grainger, S, Cazzolato, B 2018, ‘Algorithms for multi-robot routing

with adaptive heterogeneity’, Journal of Heuristics, under review.

3. Sullivan, N, Grainger, S, Cazzolato, B 2018, ‘Analysis of cooperative locali-

sation performance under varying sensor qualities and communication rates’,

Robotics and Autonomous Systems, vol 110, pgs 73-84. Accepted 29 September

2018.

4. Sullivan, N, Grainger, S, Cazzolato, B 2018, ‘Formation-based multi-robot

routing with distance constraints’, IEEE Transactions on Automation Science

and Engineering, under review.

Conferences

1. Sullivan, N, Grainger, S, Cazzolato, B 2017, ‘Robust heterogeneous multi-robot

routing for low-intelligence agents’, Australasian Conference on Robotics and

Automation (ACRA 2017), Australia.

vi

2. Sullivan, N, Grainger, S, Cazzolato, B 2018, ‘A dual genetic algorithm for

multi-robot routing with network connectivity and fuel efficiency’, International

Conference on Robotics and Computer Vision (ICARCV 2018), Singapore.

3. Sullivan N, Pearce, G, Grainger, S, Cazzolato, B 2018, ‘An outdoor multi-

vehicle platform for cooperative localisation research’, Australasian Conference

on Robotics and Automation (ACRA 2018), New Zealand.

vii

Table of contents

List of figures xiii

List of tables xvii

Nomenclature xix

1 Background 1

1.1 Multi-Robot Systems . 1

1.2 Task Allocation . 3

1.3 Localisation . 6

1.4 Research Aims . 8

1.5 References . 8

2 Background Theory and Literature Review 12

2.1 Introduction . 12

2.2 Graph Theory . 12

viii

Table of contents

2.3 Task Allocation . 14

2.3.1 Algorithms . 15

2.3.2 Heterogeneity . 29

2.4 Collaborative Localisation . 30

2.4.1 Extended Kalman Filter . 32

2.4.2 Handling Data Incest . 35

2.4.3 Localisation with Allocation 38

2.5 Research Gaps and Objectives . 40

2.6 References . 42

3 Fast Task Allocation for Heterogeneous Robots 53

3.1 Introduction . 56

3.2 Problem Definition . 58

3.3 Multi-Robot Task Allocation Algorithms 59

3.4 Partial Knowledge . 60

3.5 Simulation . 61

3.6 Experiments . 62

3.7 Results - full knowledge . 62

3.8 Results - partial knowledge . 64

ix

Table of contents

3.9 Algorithm Limitations . 66

3.10 Conclusion . 66

3.11 References . 66

4 Task Allocation for Robots with Adaptive Heterogeneity 69

4.1 Introduction . 72

4.2 Dynamic Heterogeneity mTSP Definition 74

4.3 Transformation . 74

4.4 Sequential Auction . 76

4.5 Genetic Algorithm . 77

4.6 Worst Case Analysis . 78

4.7 Experiments . 79

4.8 Computational Results . 80

4.9 Benchmark Tests . 85

4.10 Conclusion . 86

4.11 References . 86

5 Analysing Collaborative Localisation Properties 90

5.1 Introduction . 93

5.2 Approach . 95

x

Table of contents

5.3 Results . 96

5.4 Experimental System . 99

5.5 Experimental Results . 101

5.6 Multivariate Performance . 102

5.7 Discussion . 103

5.8 Conclusion . 103

6 Task Allocation with Collaborative Localisation 105

6.1 Introduction . 108

6.2 Problem Definition . 109

6.3 Algorithm . 110

6.4 Results . 113

6.5 Computation Time . 116

6.6 Physical Implementation . 116

6.7 Conclusion . 118

6.8 References . 118

7 Summary and Conclusion 120

Appendix A Multi-Robot Hardware Platform 124

A.1 Introduction . 127

xi

Table of contents

A.2 Applications . 128

A.3 Physical Design . 128

A.4 Simulation Design . 130

A.5 Localisation . 130

A.6 Vehicle Routing . 132

A.7 Conclusion . 133

Appendix B Task Allocation with Network Connectivity 135

B.1 Introduction . 138

B.2 Problem Statement . 139

B.3 Objective Functions . 139

B.4 Solution Technique . 139

B.5 Summary of Technique . 141

B.6 Tests . 142

B.7 Results . 142

B.8 Conclusion . 143

xii

List of figures

2.1 Example task allocation problem . 17

2.2 Example task allocation solution . 17

2.3 Sequential single-item auction process 22

2.4 Graphical metahueristic process . 24

2.5 Chromosome representation for the MTSP 27

2.6 Graphical representation of a Kalman filter 32

2.7 Flow of information in cooperative localisation 34

2.8 Graphical representation of Covariance Intersection 36

3.1 Comparison of auctions for low energy usage 58

3.2 Comparison of auctions for fast completion 60

3.3 Effect of comms distance on allocation 61

3.4 Task allocation simulation flow diagram 62

3.5 New auction allocations results . 64

xiii

List of figures

3.6 Heterogeneous/homogeneous auctions 65

3.7 Counter-proof for auction upper limit 65

3.8 Heterogeneous/homogeneous auctions with limited communications . 66

3.9 Variable tuning for auctions with limited communication 67

4.1 Graphical metaheuristic process . 73

4.2 Task allocation with tools transformation 74

4.3 Task allocation with tools transformation solution 76

4.4 Chromosome representation for the mTSP 77

4.5 Chromosome representation for the mTSP with tools 77

4.6 Two-part chromosome crossover . 78

4.7 Performance with varying tool expertise for the MiniSum problem . . 83

4.8 Performance with varying tool expertise for the MiniMax problem . . 84

4.9 Example solution for a TSPLIB problem 85

5.1 Inter-robot position calculation procedure 95

5.2 Measurement noise from the MRCLAM dataset 95

5.3 CL improvement as a function of SL accuracy 97

5.4 CL improvement as a function of sensor period 97

5.5 CL improvement as a function of communication rate 98

xiv

List of figures

5.6 CL improvement as a function of yaw accuracy 99

5.7 CL improvement as a function of number of robots 99

5.8 Hardware for CL experiments . 99

5.9 Experimental setup for CL experiments 100

5.10 Software flow for CL communication 100

5.11 Experimental CL improvement as a function of SL accuracy 101

5.12 Experimental CL improvement as a function of sensor period 102

5.13 Experimental CL improvement as a function of communication rate . 102

5.14 Experimental CL improvement as a function of yaw accuracy 103

5.15 Experimental CL improvement as a function of number of robots . . . 103

6.1 Example of the formation routing algorithm 112

6.2 Example of the inter-robot zone formation process 113

6.3 Example of formation routing relative to optimal 114

6.4 Example of formation routing relative to optimal with obstacles . . . 114

6.5 Time improvements for formation routing 115

6.6 Performance improvements for formation routing 115

6.7 Computation time of formation routing 116

6.8 Example large-scale formation routing solution 116

xv

List of figures

6.9 Experimental formation routing solution 117

6.10 Experimental CL solution using formation routing 118

xvi

List of tables

1.1 Multi-robot task allocation categorisation 3

2.1 Variables for an Extended Kalman Filter. 31

3.1 Robot expertises for example scenario 63

3.2 Auction resolutions and bidding rules 63

3.3 Auction resolutions and bidding rules with limited communications . 66

4.1 Tuned genetic algorithm properties 77

4.2 Tuned genetic algorithm properties with seeding 77

4.3 Expertise table for a set of tools and task types 79

4.4 Costs to complete a task with tools 79

4.5 Performance of task-tool pairs for the MiniSum problem 80

4.6 Performance of task-tool pairs for the MiniMax problem 81

4.7 Computation time of task-tool pairs for the MiniSum problem 81

xvii

List of tables

4.8 Computation time of task-tool pairs for the MiniMax problem 82

4.9 Conversion rules for TSPLIB problems 86

4.10 Performance of TSPLIB problems for MiniSum 87

4.11 Performance of TSPLIB problems for MiniMax 88

5.1 Parameters for estimation of inter-robot detection noise 96

6.1 Performance improvement for different robot zone algorithms 110

xviii

Nomenclature

Acronyms / Abbreviations

C-SLAM Collaborative simultaneous localisation and mapping

CL Collaborative/cooperative localisation

EKF Extended Kalman filter

GA Genetic algorithm

H-mTSP Heterogeneous multiple traveling salesman problem

ILP Integer linear program

MRS Multi-Robot System

MRTA Multi-robot task allocation

mTSP Multiple travelling salesman problem

NSGA-II Non-dominated sorting genetic algorithm II

SLAM Simultaneous localisation and mapping

TSP Travelling salesman problem

VRP Vehicle routing problem

xix

Chapter 1

Background

1.1 Multi-Robot Systems

Many industries, such as manufacturing, are considered automated because they use

robots to perform the same tasks repeatedly. However, interaction between robots is

typically hand-crafted by humans. While this has proven effective for mass production,

it is difficult to adapt these systems to meet changing demands. Manufacturing a

new product requires a new interaction design from engineers, and many weeks of

re-programming the robots to obey the new design. This is a slow process, which

limits product diversity and customisation. It is also an inefficient process: humans

often rely on intuition, which frequently results in suboptimal decisions. In response

to these shortcomings, there has been an increased desire to upgrade these systems

to ones where humans declare a high-level goal, and the robots calculate how they

should operate in order to achieve this goal. This current automation direction, deemed

Industry 4.0, aims to improve the interoperability, transparency, accessibility, and

decentralisation of automated industries [1]. This would shift automated systems to use

a number of robots that act independently while adhering to higher level instructions.

1

1.1 Multi-Robot Systems

In essence, automation is moving from single-robot systems to multi-robot systems

(MRSs).

First researched in the late 1980s, multi-robot system research quickly displayed

relevance to artificial intelligence, game theory, economics, theoretical biology, dis-

tributed computing, and artificial life [2]. MRSs offer advantages such as increased

spatial distribution, improved robustness through redundancy and data fusion, and

improved versatility and scalability [3].

MRSs have had impact on industries including warehouse automation [4], agri-

culture [5], disaster response [6], search and rescue [7], environment monitoring [8],

healthcare assistance [9], mining [10], and assembly [11]. Another industry of particu-

lar importance is transportation, where self-driving cars are predicted to revolutionise

how people and products move around [12]. Efficient operation of MRSs in these

fields will have significant cost savings for the employer, cost reductions for customers,

and reduced environmental impact from energy usage.

While MRSs have greater capabilities than their singular counterparts, they are

more complex to design and operate. They require decisions regarding communication

(who should robots communicate with, and what should they say?), negotiation (how

should robots reason if they have conflicting goals?), and control (how should robots

move to avoid collisions?).

This thesis explores the two fundamental questions of task allocation (given a

number of tasks to be completed, which robots should complete them, and in what

order?), and localisation (where are the robots located?).

2

1.2 Task Allocation

Table 1.1: Multi-robot task allocation categorisation [13].

Category Option 1 Option 2

Robot Type
Single-Task (ST), robots

complete one task at a time.

Multi-Task (MT), robots
complete multiple tasks at the

same time.

Task Type
Single-Robot (SR), each
task is completed by one

robot.

Multi-Robot (MR), a task
requires multiple robots to be

completed.

Allocation
Type

Instantaneous Assignment
(IA), robots are given tasks
to complete immediately.

Time-Extended Assignment
(TA), robots are given a schedule

of tasks to complete.

1.2 Task Allocation

In any robotic system, tasks must be allocated to robots for completion. Given multiple

tasks, a single robot system must determine the order of completion. A multi-robot

system, however, must also determine which robot to use for each task. These two

problems are linked, and should therefore not be solved independently [13] i.e., tasks

should be allocated to robots that can complete them efficiently, but how efficiently a

robot completes a task depends on the other tasks that it has been allocated.

The techniques used to solve the the multi-robot task allocation problem (MRTA)

are largely dependent on the type of problem. MRTA has been categorised to reflect

the various types of problems [13]. These categories are shown in Table 1.1. For

example, The ST-SR-TA (single-task, single-robot, time-extended) category would

apply to automated transportation, where each vehicle completes one delivery at a time,

and the order of the deliveries impacts total delivery time. The ST-MR-TA (single-task,

multi-robot, time-extended) category would apply to robotic manufacturing. Each

robot builds one part at a time, and each product requires multiple robots working on it

for it to be made. The ST-SR-IA (single-task, single-robot, instantaneous assignment)

would apply to a simple operating system scheduler. The order of tasks is not important,

it only needs to know the next task to process.

3

1.2 Task Allocation

This thesis is focussed on ST-SR-TA problems. In particular, problems where tasks

have spatial locations. To complete a task, robots must move to the task location and

spend a specified amount of time working to complete the task. We do not define the

nature of the work, but assume that it can be completed by a single robot. This type

of task allocation problem applies to agriculture, search and rescue, transportation,

cleaning, and many others [14].

This class of task allocation problem is also known by other names, such as

multi-robot routing, the Vehicle Routing Problem (VRP), and the Multiple Travelling

Salesman Problem (mTSP), which is an extension on the well-known Travelling

Salesman Problem (TSP). The original TSP is as follows: a salesman wishes to travel

to every city in their country before returning home. In what order should they visit the

cities in order to minimise travel time? This translates into a robotics problem: a robot

wishes to complete every task in their area before returning to recharge. In what order

should they complete the tasks in order to minimise travel time? For a small number

of tasks, this is a simple problem. One could calculate each possible allocation and

keep track of the allocation that produces the minimum travel time. As we increase the

number of tasks, however, this strategy becomes too costly to calculate. With N tasks,

the number of possible allocations is N factorial (N!). For example, a TSP with 40

tasks has 8.2×1047 possible allocations. This is a textbook NP-hard problem, where

the problem size scales larger than polynomially. With such problems, we care about

both allocation quality and required processing time.

The mTSP has multiple salesmen (robots), and each city (task) must be visited

(completed) at least once. In addition to the added complexity, the mTSP requires

several extra decisions to be made. For example, the robots may start at the same or dif-

ferent locations. We may be interested in the most energy efficient solution, the fastest

solution, or a balance between them. The robots may be identical (homogeneous), or

may be suited for different types of tasks (heterogeneous).

4

1.2 Task Allocation

It is important to note that there are many similar problems to the mTSP. While

they are not addressed in this thesis, it is useful to briefly discuss them to frame the

scope of this thesis. If the order of tasks is unimportant, it becomes an assignment

problem. In the assignment problem, each robot only needs to be given a single task

to solve. This can be solved exactly in polynomial-time [15], meaning heuristics and

metaheuristics are usually not needed.

If tasks are unknown in advance, it is possible to apply mTSP algorithms by re-

calculating each time a new task is discovered. However, this can be impractical in

certain dynamic systems, and algorithms specifically designed for dynamic systems

should be used for those cases [16].

If robots only discover tasks if they are nearby, it becomes a searching problem.

Balance must be found between searching for unknown tasks and solving known tasks

[17]. In some cases, research has also dealt with communication limitations, where it

is desired for robots to pass information regularly so that recently explored areas are

not re-explored, and that a home base is updated with the current situation [18].

It is possible for task completion costs to be stochastic, where there are estimated

probabilities for the amount of time a robot will take to complete a certain task.

Stochastic algorithms can then find solutions that perform well and with a high level

of confidence [19]. This is particularly relevant if certain tasks must be completed

before other tasks are able to be started, where one task taking longer than normal may

force robots to wait.

A significant portion of this thesis involves the development and analysis of new

algorithms for solving the mTSP. Existing algorithms are reviewed in Chapter 2.

5

1.3 Localisation

1.3 Localisation

It is important to know where robots are within their environment, known as local-

isation. This is a fundamental requirement for navigation, collision avoidance, and

task completion. We often require position and orientation, known as pose, as well as

linear and angular velocity, known as twist. This information, and potentially others,

make up a robots state.

Single robots localise using two classes of on-board sensors. The internal state of

robots are measured by interoceptive sensors, such as gyroscopes (measuring angular

velocity), accelerometers (measuring acceleration), and wheel encoders (measuring

wheel rotation). Interoceptive sensors reliably provide data, but have errors that

accumulate over time. Exteroceptive sensors interact with the environment, such as

GPS, cameras, magnetometers and pulsed lasers (LIDARs). Exteroceptive sensors

typically have far less error accumulation, but they are sensitive to environmental

conditions. For example, localisation using GPS requires satellite signals, localisation

from LIDARs require static terrain or recognisable features, and cameras require

certain lighting conditions.

With so many sources of data, it is necessary to fuse them to form a single best-

estimate of the robot’s state. One of the most common data fusion techniques is the

Kalman Filter, which uses a combination of sensor inputs and system dynamics to

produce pose and twist estimates. A common extension to this filter is the Extend-

ed Kalman Filter (EKF), which can be used for non-linear systems such as robot

localisation [20].

Robots in multi-robot systems can make use of singular robot localisation tech-

niques, but are also presented with an additional opportunity. The robots are able to

help one another localise. This is known as Collaborative (or Cooperative) Localisation

6

1.3 Localisation

(CL). There are two major research areas for CL, one is known as Collaborative Simul-

taneous Localisation and Mapping (C-SLAM), where robots independently produce

maps of the environment and then share and combine these maps. C-SLAM was a key

contributor for the winning team of the MAGIC 2010 competition [21], where robots

had to autonomously survey and map a 500m x 500m dynamic urban environment.

Communication was not always available, so individual mapping and map fusion

was necessary to continue surveillance during communication down-times. C-SLAM

has also been used for tasks such as mapping a large area with aerial vehicles [22],

localising underwater vehicles to reduce the need for surfacing [23], and to identify

and track dynamic targets [24]. C-SLAM can be powerful, but it has requirements that

make it unsuitable in certain systems. Firstly, each robot must have SLAM capabilities.

This can inflate the cost of multi-robot systems, as environment mapping often makes

use of high quality sensors such as 3D LIDARs. Each robot must also be capable

of processing data quickly, either through on-board processing or communication,

and is therefore not suitable for systems with inexpensive processors or unreliable

communication. Secondly, SLAM performance is dependent on the type and number

of landmarks in the environment [25]. SLAM does not operate well in open areas

where there are few recognisable features.

The other major area for CL research involves measuring and communicating

inter-robot observations. This differs from C-SLAM in that no map sharing occurs.

Robots observe one another, estimate each other’s position, and communicate their

estimates to the observed robots. There are no requirements for how robots localise

and perform inter-robot measurements, allowing individual robots to have different

sensors, processing capabilities, and internal representations of the environment. There

is also less dependence on the environment, and can successfully operate provided

robots are able to detect one another. This method of CL is what is referred to in this

thesis.

7

1.4 Research Aims

1.4 Research Aims

The intent of this thesis is to develop and analyse new state-of-the-art multi-robot

task allocation algorithms, specifically for heterogeneous robots (Chapter 3), and

robots that use tools (Chapter 4). It also analyses the conditions where collaborative

localisation is beneficial (Chapter 5), and uses that information as part of a new task

allocation algorithm that considers collaborative localisation as part of the allocation

process (Chapter 6). Specific objectives are listed in Chapter 2, where research gaps

are identified.

Superior task allocation and localisation will improve the efficiency, effectiveness,

and reliability of multi-robot systems. It has significant relevance to a variety of

industries, particularly transportation, warehouse automation, and defence.

1.5 References

[1] Mario Hermann, Tobias Pentek, and Boris Otto. Design principles for industrie

4.0 scenarios. In System Sciences (HICSS), 2016 49th Hawaii International

Conference on, pages 3928–3937. IEEE, 2016.

[2] Y Uny Cao, Alex S Fukunaga, and Andrew Kahng. Cooperative mobile robotics:

Antecedents and directions. Autonomous Robots, 4(1):7–27, 1997.

[3] Lynne E Parker. Distributed intelligence: Overview of the field and its application

in multi-robot systems. Journal of Physical Agents, 2(1):5–14, 2008.

[4] Roelof Hamberg and Jacques Verriet. Automation in warehouse development.

Springer, 2012.

[5] Anthony King. The future of agriculture. Nature, 544(7651):S21–S23, 2017.

8

1.5 References

[6] Mathew DeDonato, Velin Dimitrov, Ruixiang Du, Ryan Giovacchini, Kevin

Knoedler, Xianchao Long, Felipe Polido, Michael A Gennert, Taskin Padir,

and Siyuan Feng. Human-in-the-loop control of a humanoid robot for disaster

response: A report from the DARPA robotics challenge trials. Journal of Field

Robotics, 32(2):275–292, 2015.

[7] Geert-Jan M Kruijff, M Janícek, Shanker Keshavdas, Benoit Larochelle, Hendrik

Zender, Nanja JJM Smets, Tina Mioch, Mark A Neerincx, Jurriaan Van Diggelen,

and Francis Colas. Experience in system design for human-robot teaming in

urban search and rescue. In Field and Service Robotics, pages 111–125. Springer,

2014.

[8] Anand Nayyar, Vikram Puri, Nhu Gia Nguyen, and Dac Nhuong Le. Smart

Surveillance Robot for Real-Time Monitoring and Control System in Environment

and Industrial Applications, pages 229–243. Springer, 2018.

[9] Yin Zhang, Meikang Qiu, Chun-Wei Tsai, Mohammad Mehedi Hassan, and Atif

Alamri. Health-cps: Healthcare cyber-physical system assisted by cloud and big

data. IEEE Systems Journal, 11(1):88–95, 2017.

[10] Joshua A Marshall, Adrian Bonchis, Eduardo Nebot, and Steven Scheding.

Robotics in mining, pages 1549–1576. Springer, 2016.

[11] Ross A Knepper, Todd Layton, John Romanishin, and Daniela Rus. Ikeabot: An

autonomous multi-robot coordinated furniture assembly system. In Robotics and

Automation (ICRA), 2013 IEEE International Conference on, pages 855–862.

IEEE, 2013.

[12] Todd Litman. Autonomous vehicle implementation predictions. Victoria Trans-

port Policy Institute, 2017.

9

1.5 References

[13] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias. A comprehensive

taxonomy for multi-robot task allocation. The International Journal of Robotics

Research, 32(12):1495–1512, 2013.

[14] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applica-

tions. SIAM, 2014.

[15] Lantao Liu and Dylan A Shell. Assessing optimal assignment under uncertainty:

An interval-based algorithm. The International Journal of Robotics Research,

30(7):936–953, 2011.

[16] Francesco Bullo, Emilio Frazzoli, Marco Pavone, Ketan Savla, and Stephen L

Smith. Dynamic vehicle routing for robotic systems. Proceedings of the IEEE,

99(9):1482–1504, 2011.

[17] Torsten Andre and Christian Bettstetter. Collaboration in multi-robot exploration:

To meet or not to meet? Journal of Intelligent & Robotic Systems, 82(2):325,

2016.

[18] Jacopo Banfi, Alberto Quattrini Li, Nicola Basilico, Ioannis Rekleitis, and

Francesco Amigoni. Asynchronous multirobot exploration under recurren-

t connectivity constraints. In Robotics and Automation (ICRA), 2016 IEEE

International Conference on, pages 5491–5498. IEEE, 2016.

[19] Roberto Tadei, Guido Perboli, and Francesca Perfetti. The multi-path traveling

salesman problem with stochastic travel costs. EURO Journal on Transportation

and Logistics, 6(1):3–23, 2017.

[20] Matthew B Rhudy, Roger A Salguero, and Keaton Holappa. A kalman filtering

tutorial for undergraduate students. International Journal of Computer Science

& Engineering Survey (IJCSES), 8:1–18, 2017.

10

1.5 References

[21] Robert Reid and Thomas Bräunl. Large-scale multi-robot mapping in magic

2010. In 2011 IEEE 5th International Conference on Robotics, Automation and

Mechatronics (RAM), pages 239–244. IEEE, 2011.

[22] Christian Forster, Simon Lynen, Laurent Kneip, and Davide Scaramuzza. Collab-

orative monocular SLAM with multiple micro aerial vehicles. In 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 3962–3970.

IEEE, 2013.

[23] Jacopo Banfi, Alberto Quattrini Li, Nicola Basilico, and Francesco Amigoni.

Communication-constrained multirobot exploration: Short taxonomy and com-

parative results. In Proceedings of the IROS workshop on on-line decision-making

in multi-robot coordination (DEMUR2015), pages 1–8, 2015.

[24] Diluka Moratuwage, Ba-Ngu Vo, and Danwei Wang. Collaborative multi-vehicle

SLAM with moving object tracking. In Robotics and Automation (ICRA), 2013

IEEE International Conference on, pages 5702–5708. IEEE, 2013.

[25] Gregory Dudek and Michael Jenkin. Computational principles of mobile robotics.

Cambridge University Press, 2010.

11

Chapter 2

Background Theory and Literature

Review

2.1 Introduction

This chapter will cover two key problems for multi-robot systems: task allocation

(given a number of tasks to be completed, which robots should complete them, and

in what order?), and localisation (where are the robots located?). State-of-the-art

techniques are reviewed, and gaps in academic knowledge are listed.

2.2 Graph Theory

Multi-robot system algorithms often make use of graph theory [1]. Graph theory has

been around for hundreds of years, and modelling MRS problems as graphs enables

the use of a large history of mathematical formulation. A graph consists of vertices

12

2.2 Graph Theory

and edges. Edges are the traversal between vertices. They have an associated weight,

or cost, that is applied whenever they are traversed.

Both multi-robot task allocation and collaborative localisation utilise graph theory.

In the MRTA case, the vertices represent tasks, and the edges represent the time or

distance required for robots to move to and complete a task [2]. In the CL case, vertices

represent robots, and edges represent communication of information [3].

It is often helpful to represent graphs visually, such as in Figure 2.1. It is possible

to draw a graph any number of ways; the positions of the points and lines are simply

there to illustrate connections. The points are not necessarily to scale, and the lines

do not necessarily imply that they will be traversed in a straight line. A graph is

considered complete if every pair of vertices is joined by an edge. Otherwise, it is

called incomplete, such as when a robot can only communicate with its neighbours. A

graph is considered directed if each edge is strictly one-way. Otherwise, it is considered

undirected. A path is represented by a series of vertices (or edges), indicating traversal

within a graph.

The triangle inequality is a property of triangles which states that that the sum of

the lengths of any two sides must be greater than or equal to the length of the remaining

side. This property can also be true for graphs: if travelling from vertex i to vertex

j, it is not beneficial to detour through another vertex k. In particular, this is true for

graphs where vertices represent spatial locations. This property is useful for many

MRS algorithms, such as guaranteeing worst-case solution quality [4].

13

2.3 Task Allocation

2.3 Task Allocation

The multi-robot task allocation problem can be represented as a graph. Consider a set

of robots R = {r1,r2, . . . ,rn} and initial positions (depots) D = {d1,d2, . . . ,dn}, and

a set of target positions (tasks), T = {t1, t2, . . . , tm}. We form a graph with vertices

V = D∪T , and edges E joining any two vertices in V . The cost function for a robot

r ∈ R to traverse edge e ∈ E is cr
e ∈ R, which reflects the time it takes that robot to

traverse that edge.

For the mTSP, valid allocations consist of a list of robot paths which result in each

vertex v ∈V being visited by a robot. Each robot will have a path pr consisting of the

edges that robot plans to traverse. For example, a path of length l for robot r ∈ R is

defined as a set of edges pr = {e1,e2, . . . ,el}. It is common requirement for robots to

also return to their start position. A robot’s path cost, RPC, is the sum of all edge costs

in their path.

RPC(pr) =
k

∑
i=1

cr
pr

i
(2.1)

Allocation quality is defined by how well it meets a given objective. Two objectives

are commonly used. If we wish to complete all tasks as energy efficiently as possible,

we must minimise the sum of all robot paths (MiniSum). If we wish to complete all

tasks as quickly as possible, we must minimise the maximum robot path (MiniMax).

Minimise energy usage: MiniSum = min
p ∑

r
RPC(pr) (2.2)

Minimise completion time: MiniMax = min
p

max
r

RPC(pr) (2.3)

14

2.3 Task Allocation

While these could both be described as a minmax problem, this definition of

MiniSum is linear, which allows us to use linear algorithms. This will be explored

further in Chapter 2.

It is common to refer to optimisation problems, such as MRTA, as problems where

one must search the solution space to find good solutions [5]. In this case, a ‘solution’

is an allocation of robots to tasks that results in all tasks being completed. The concept

of a solution space is based on the idea that solutions can be sorted by similarity.

Similar solutions, called neighbours, are defined as solutions that differ by a single

transformation. For example, neighbours could be found by reversing a robot’s path

or swapping two tasks between robots. The solution space is rarely ever displayed

graphically. For task allocation theory, it is sufficient to use an intuitive understanding

that some allocations are more similar than others. As such, if an algorithm is said to

search nearby or local solutions, this is synonymous to evaluating similar solutions.

In comparison, global solutions refers to all possible solutions, regardless of similarity.

A graphical representation can be seen in Figure 2.4.

MRTA problems can have very large solution spaces, which has led to a variety of

algorithms that balance between solution quality and required processing time.

2.3.1 Algorithms

Integer Linear Programs

Linear programs can be used to solve problems which require minimising or max-

imising a linear function subject to linear constraints. Commercial solvers can solve

linear programs optimally i.e. the solution that minimises or maximises the problem

according to the cost function. The type of linear program is defined by its variables.

15

2.3 Task Allocation

An integer linear program (ILP) is one where the variables are integers [6]. The

definition is:

minimise cx (2.4)

subject to Ax≤ b (2.5)

Aeqx = beq (2.6)

In these equations, x represents the vector of decision variables to be solved, c is

a vector of costs associated with each decision variable, A and Aeq are inequality

matrices, and b and beq are inequality vectors.

Consider the mTSP in Figure 2.1. There are two robots and three tasks at given

locations. We calculate a cost matrix that describes the time it takes for a robot to

traverse edges. This cost matrix can also be described as a cost vector c. The edge-

usage vector x reflects how many times each edge is used in a solution. This vector

is what we are solving for using the ILP. Example values of x, with their graphical

interpretation, are shown in Figure 2.2.

ILP constraints first require the definition of some variables. The set of edges, E,

is split into two sets, edges between a robot and a task Er, and edges between tasks Et .

We define a function that takes nodes as an input, and returns edges that are connected

to those nodes. The function, δ (S) = {(i, j)) ∈ E : i ∈ S, j /∈ S}, takes a set of vertices

and returns all edges that connect vertices in the set with vertices that are not in the set.

The special case, δ (i), takes a single vertex i ∈V and returns all edges it is connected

to. Our objective is to complete all tasks as energy efficiently as possible, which is

achieved by minimising the sum of edge costs, known as the MiniSum objective.

16

2.3 Task Allocation

1

8

4
2

5

79

6

(1)

(5)

(4)

(3)

(2)

3

(1) (2)

(1)

(2)

- 8.1

(3) (4) (5)

(3)

(4)

(5) 8.1

-

-

-

-

-

-

12.0

12.0

10.2

10.2

8

8

12.2

12.2

12.8

12.8

7.3

7.3

10

10

3.6

3.6

12.0 10.2 8.1 8 12.2 12.8 7.3 10 3.6

1 43 52 6 7 8 9

Node to

Node
from

Edge

Cost Matrix

Cost Vector

Fig. 2.1: An example multiple Travelling Salesman Problem (mTSP). Two robots
(large coloured circles) must complete three tasks (small black circles). All vertices
(robot or task) have been labelled from (1) to (5). Relevant edges have been labelled
from 1 to 9. The time taken to traverse an edge can be reflected as a cost matrix or a
cost vector.

1

8

5

7

6

8

79

1 0 1 0 0 0 1 0 1x

4
2

9

0 1 1 2 0 0 0 0 1x

2

5
6 4

1
33

Fig. 2.2: Example solutions to a multiple Travelling Salesman Problem (mTSP). Two
robots (large coloured circles) must complete three tasks (small black circles). A
variable vector x indicates how many times each edge is used.

17

2.3 Task Allocation

The ILP formulation for the mTSP is as follows:

minimise ∑
e∈E

cexe (2.7)

subject to xδ (i) = 2 ∀i ∈ T (2.8)

xe ∈ {0,1} ∀e ∈ Et (2.9)

xe ∈ {0,1,2} ∀e ∈ Er (2.10)

xδ (S) ≥ 2 ∀i ∈ S,S⊆ T (2.11)

Equation (2.7) specifies the objective function, namely energy efficiency. The

other common objective, fast task completion (MiniMax), is unable to be expressed

as a linear equation, and is therefore unable to be solved using ILPs. Equation (2.8)

ensures that exactly two connected edges are used for each vertex, because valid

solutions require that each vertex is traversed to and traversed from. Equation (2.9)

ensures that edges between tasks are used 0 or 1 times, because the optimal solution

will never use the same edge more than once between tasks. This is a consequence

of the triangle inequality, i.e., it is never beneficial to complete a task once it has

already been completed. Equation (2.10) ensures that edges connected to a robot start

position are used 0 times (robot is not used), 1 time (robot uses this edge to leave

home, and uses another edge to return home), or 2 times (robot uses the same edge to

leave and return home). Equation (2.11) is known as a sub-tour elimination constraint.

Without this, ILPs may decide that the optimal solution is for robots to move to a

task, teleport away, complete a small sub-tour of tasks, then teleport back. This is

clearly impossible, but does not violate any of our other constraints. This particular

sub-tour elimination constraint forces all vertex subsets to be connected to the rest of

the vertices, preventing the use of teleportation. However, sub-tour constraints have

limitations, as the number of possible subsets, S, scales enormously with the number

18

2.3 Task Allocation

of vertices. As such, this constraint is applied iteratively during calculation, where we

only constrain sub-tours that the ILP attempts to use.

The edge-usage variable, x, can be calculated using a commercially available ILP

solver, such as CPLEX or MATLAB’s Optimization Toolbox. The solver dynamically

removes large portions of the search space that are guaranteed to not contain optimal

solutions, using techniques such as branch and cut [7]. Commercial solvers are

often used due to the significant amount of optimisation that can be performed with

parallelism and dynamic searching.

Several adaptations need to be made for solving the heterogeneous mTSP, although

the underlying concept remains the same [8]. Each robot k ∈ R has its own cost vector

ck
e and edge-usage variable xk

e. We also need to employ a binary variable yk
i indicating

if robot k ∈ R is completing task i ∈ T . This binary variable is solved by the ILP, so

we append it to x for actual calculation.

The heterogeneous formulation is as follows:

minimise
n

∑
k=1

∑
e∈E

ck
exk

e (2.12)

subject to xk
δ (i) = 2yk

i ∀i ∈ T,k ∈ R (2.13)

xk
δ (S) ≥ 2yk

i ∀i ∈ S,S⊆ T,k ∈ R (2.14)
n

∑
k=1

yk
i = 1 ∀i ∈ T (2.15)

xk
e ∈ {0,1} ∀e ∈ Et ,k ∈ R (2.16)

xk
e ∈ {0,1,2} ∀e ∈ Er,k ∈ R (2.17)

yk
i ∈ {0,1} ∀i ∈ T,k ∈ R (2.18)

19

2.3 Task Allocation

Equation (2.12) specifies our objective function, once again minimising the sum of

all costs. Equation (2.13) ensures that exactly two connected edges are used for each

vertex for the robot that completes that task. All other robots should not use edges

connected to that vertex. Equation (2.14) is the same sub-tour elimination constraint

as before. Equation (2.15) ensures that each task is completed by one robot. Equation

(2.16) ensures that edges between tasks are used 0 or 1 times. Equation (2.17) ensures

that edges connected to a robot start position are used 0, 1, or 2 times. Equation (2.18)

ensures that tasks are completed by a given robot 0 or 1 times.

Integer linear programs have been used to solve the Travelling Salesman Problem

for over thirty years [9]. The guarantee of optimality makes them an incredibly useful

tool. They are suitable for adding additional constraints such as time windows, carbon

emissions, and cargo limitations [2, 10]. They are not without their weaknesses,

however. It can be difficult representing problem objectives and constraints in a

suitable format, leading to the inability to solve for certain objectives, notably the

objective to complete tasks as quickly as possible. Application of constraints may also

require clever thinking in order to apply them in a desirable way, such as the sub-tour

elimination constraints of Equation (2.11). Another key weakness is the time taken

to find solutions. ILP solvers apply search space reduction techniques dynamically,

which means processing time can vary significantly. They also suffer from scaling, for

example, a problem with 29 tasks took 0.6 seconds, another with 101 tasks took 20

minutes [8].

Nevertheless, there are many problems where these weaknesses are acceptable.

Even for problems that require faster solutions, they are often used as a performance

benchmark.

20

2.3 Task Allocation

Auctions

In some cases of the multiple Travelling Salesman Problem, finding a good solution

quickly is more important than waiting for a better solution. Many algorithms have

been designed with this requirement in mind, known as heuristics. The fastest algo-

rithms for many problems are typically greedy, making good choices for the short-term

in the hope that the long-term result is a good solution [11]. For the mTSP, this is

commonly performed using a task auction. One or more tasks are held for auction,

the robots bid on these tasks, and then one or more of the tasks are sold to the robots.

Examples of this include ordered single-item auctions, which auction and sell one task

at a time; parallel single-item auctions, which auction and sell all tasks in a single

auction round; and sequential single-item auctions, which auction all tasks but only

sell one task each auction round. Sequential single-item auctions have been found to

perform the best [12, 9]. An example of the sequential single-item auction process is

shown in Figure 2.3.

In addition, sequential single-item auctions have been tailored for different types

of problems and perform well against other algorithms. In harsh communication

environments, sequential single-item auctions were able to successfully allocate to

more robots that other auctioning methods [13]. For task allocation with temporal

constraints, a variant on sequential single-item auctions produced more compact

schedules, more tasks completed, and reduced computation time than other algorithms

[14]. For task allocation requiring formation of robot coalitions, sequential single-item

auction bidding was used to produce near-optimal coalitions [15].

It is also possible to auction bundles of tasks in combinatorial auctions, but both

bidding and auction resolution for combinations are NP-hard [16]. Therefore usage

of combinatorial auctions requires smart selections of combinations. In practice, se-

21

2.3 Task Allocation

(3)

(2)

(1)

(1) (2) (3)

Circle

Square

Bids

24.1 20.4 16.1

16 24.4 25.6

(3)

(2)

(1)

(3)

(2)

(1) (3)

(2)

(1)

a) b)

c) d)

(1) (2) (3)

Circle

Square

Bids

- 20.4 16.1

- 10.9 14.8

(1) (2) (3)

Circle

Square

Bids

- - 16.1

- - 16.4

Fig. 2.3: The sequential single-item auction process. Robots (large circle and square)
independently bid on tasks using the estimated time required to complete them. The
lowest bidder gets allocated the task, and bids are updated accordingly. This repeats
until all tasks are allocated to the robots.

22

2.3 Task Allocation

quential single-item auctions provide similar results with far simpler implementations

[16].

Sequential single-item auctions also provide some guarantees of allocation quality.

In particular, for the energy efficiency objective, solutions are guaranteed to be no

worse than two times the optimal case. In practice, solutions are usually close to 25%

worse than optimal [4]. For the fastest completion objective (MiniMax), solutions

are guaranteed to be no worse than 2N worse than optimal, where N is the number of

robots. In practice, results are much closer, although it is difficult to quantify, and are

system specific. Finding optimal solutions for the fast completion objective is an open

problem due to its non-linearity.

Metaheuristics

Heuristic approaches use local decisions in the hope that the result is a globally good

solution. These are often fast, sub-optimal, and specifically designed for each type

of problem. Metaheuristics, however, are problem-independent. They provide an

algorithmic framework, where problem-specific components are inserted to produce

a heuristic. The generalisation is useful, but is not the only benefit of metaheuristics.

They are able to overcome local optima that often limit heuristics. The book by

Gendreau and Potvin on metaheuristics defines this succinctly [5]:

"Meta-heuristics are problem-independent algorithms that develop heuris-

tic solution methods that orchestrate an interaction between local improve-

ment procedures and higher level strategies to create a process capable of

escaping from local optima and performing a robust search of a solution

space."

23

2.3 Task Allocation

Objective
Cost

(smaller is better)

Valid Solutions

Current
Solution

Exploitation

Exploration

Solution Space

Fig. 2.4: A illustration of metaheuristic processes on the solution space. The objective
is to find a solution with the smallest objective cost within a given time limit. Exploita-
tion performs local improvement to find good solutions quickly, but is limited by local
minima. Exploration can overcome local minima by finding different solutions, but
will take much longer to find good solutions. A combination of these two processes
are used by metaheuristics.

Metaheuristics divide the search process into exploration and exploitation [17].

Exploration searches promising areas of the solution space in an attempt to find new

solutions that are significantly different to what has been found before. Exploitation

refers to the local improvement procedures that search for similar solutions, ideally

finding solutions that keep the good components while improving on the bad com-

ponents. It is difficult to define what parts of a solution are good and bad, so local

improvement is done by semi-randomly applying functions that modify the solution.

A graphical representation of exploration and exploitation can be seen in Figure 2.4.

Finding a balance between exploration and exploitation is difficult. Prioritising

local improvement increases the likelihood of finding good solutions quickly, but may

struggle to overcome local optima. Prioritising exploration increases the likelihood of

overcoming local optima, but will take a much longer time. As such, metaheuristics

require tuning to find good solutions within an acceptable time frame. Metaheuristics

are also unable to offer any guarantee of solution quality. The use of randomness

24

2.3 Task Allocation

means it is possible to find optimal solutions, but it is also possible for it to not find

any good solutions.

While metaheuristics can be applied to many different optimisation problems,

it has been proven that no one metaheuristic can be best suited for all optimisation

problems [18]. Hence, a large number of metaheuristics exist, and there are textbooks

that discuss them all in detail [5]. An overview of commonly used metaheuristics for

the mTSP is provided here:

Simulated annealing is inspired by manufacturing, where a material is initially

heated then cooled slowly to achieve certain material properties. Simulated annealing

metaheuristics start off ‘hot’, where they are willing to consider worse solutions to

overcome local optima, and gradually become ‘cool’, where they only perform local

improvement procedures. It is one of the simplest metaheuristics to implement, leading

to its use for a wide variety of problems. It has been used to improve layout design

for cellular manufacturing [19], along with fuzzy theory to assist tuning [20], as well

as unmanned aerial vehicle inspections [21], and extended with GPU acceleration to

improve computation speed [22]. It has also been used in conjunction with hierarchical

task networks to generate new plans [23].

Tabu search performs local search until it reaches a local optima. It then evaluates

worse solutions in an attempt to overcome the local optima, and prevents exploring

previously evaluated solutions through tabu lists, which record recent search history.

Other methods have attracted more recent research focus than tabu search, but remains

a common candidate for hybrid metaheuristics, where tabu search is used to perform

local improvement [24–26].

Ant colony optimisation is inspired by ants laying pheromones to guide other

ants. In nature, it has been observed that ant movements are initially exploratory,

but after some time the majority of ants follow efficient paths between a food source

25

2.3 Task Allocation

and the nest [27]. The fundamental principle of ant colony optimisation is that ants

iteratively build solutions, leaving behind a pheromone whose strength scales with

solution performance. New ants will either follow pheromones or search for new

solutions based on a stochastic decision. Eventually, the strongest smelling local

decisions will produce an effective global solution. While often outperformed by other

metaheuristics for the TSP and its variants [5], it has shown great performance in

problems that change characteristics while being solved, such as ad hoc networking

[28]. Nevertheless, it has been applied to wind farm optimisation [29], mTSP [30, 31],

and multi-objective mTSP [32, 33].

One of the most common metaheuristic is the Genetic Algorithm (GA), inspired by

biological evolution. A number of genes (solutions) are grouped to form a population.

The genes can breed (crossover) and mutate to form new genes. The least-fit (worst

scoring) genes are removed from the population. This process continues for many

generations (iterations), so that the resulting population is likely to contain much

better solutions than the original population. Genetic algorithms are one of the

most popular metaheuristics for the mTSP and its variants [34–36], and thus is the

metaheuristic utilised in this thesis. Many practical decisions need to be considered

when implementing a GA.

GA Representation. Solutions need to be encoded as genes for use in crossover

and mutation operations. Solutions to the mTSP need to encode which robot each

task is allocated to, and the order that the robots will complete them. This can be

done with a one-chromosome representation [37], which indicates robot allocations

using separation tokens; the two-chromosome representation [38], which indicates

robot allocations using a separate chromosome; or the two-part chromosome represen-

tation [39], which indicates robot allocations by positioning and path-length. These

representations can be seen in Figure 2.5. The two-part chromosome representation is

26

2.3 Task Allocation

(a)
9 7 5 6 2 8 4 3 1-1 -2

Robot 1 Robot 2 Robot 3

(b)

9 7 5 6 28 43 1

1 1 1 1 12 23 3

Task ID

Robot ID

(c)
9 7 5 6 2 8 4 3 1 5 2 2

Robot 1 Robot 2 Robot 3

Fig. 2.5: Chromosome representations for the Multiple Travelling Salesman Problem
(mTSP), where three robots must complete nine tasks. All three chromosomes rep-
resent the same solution. a) One-chromosome representation, which uses separation
tokens. b) Two-chromosome representation, which uses an allocation chromosome.
c) Two-part chromosome representation, which indicates allocations using robot path
length.

considered standard because it has been shown to have fewer redundant solutions than

other representations [39].

GA Population. A large population size provides greater opportunities to over-

come local optima, but at the cost of extra computation time. Unfortunately, there is

no formula to select population size [5], but those designed for the mTSP often use

values between 10 and 250, scaling with number of tasks and robots [40, 36].

GA Initialisation. Initialising the population with random solutions provides a

good initial spread for the GA to work from. Alternatively, seeding the GA with

high-quality solutions from other algorithms can improve results by giving the GA

27

2.3 Task Allocation

a head-start, but may induce premature convergence [41], i.e., getting stuck in local

optima.

GA Selection. Members of the population are selected for breeding or mutation

through a selection process. A number of selection processes exist, such as score-based

or rank-based roulette wheel, where the chance to get selected scales with solution

quality. There is also tournament selection, where solutions are grouped randomly,

and the best solution in each group is selected. It has been shown that for the TSP

case, tournament-based selection is best for small problem sizes, while rank-based

selection scales better [42].

GA Crossover. Breeding is performed by crossover functions, which perform the

exploration process. They take two solutions and produce a new valid solution that

shares traits of both of the parents. While many generic functions exist, it is common

to use one that is designed for the mTSP [41].

GA Mutation. Mutation performs the exploitation process. For the mTSP, com-

mon mutations include task-swapping between robots, and sub-path reversal. The

latter performs the same process as a classic local improvement operator, called 2-opt

[43].

GAs are also commonly used for multi-objective problems. Performing well in

one objective usually requires performing poorly in another, so the goal is to produce

a range of solutions. This makes population selection difficult, because it is unclear

which solutions are the most fit. The most commonly used multi-objective GA, the

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [44], handles this problem

by sorting the population into Pareto fronts. Pareto fronts are constructed using the

concept of solution dominance. One solution dominates another if it is greater for

at least one objective, and not worse for any objectives. Solutions in the population

that are not dominated by any other are put in the first Pareto front. Solutions that are

28

2.3 Task Allocation

dominated by those in the first front are put in the second front, and so on. Ranking

within a front is performed using a crowding distance metric to promote creating a

wide range of solutions. Algorithms for the mTSP have used NSGA-II [40] and new

multi-objective algorithms are often inspired by NSGA-II [32].

What we can learn from literature is that even though metaheuristics are problem-

independent, applying them to problems still requires research on solution representa-

tion, exploration and exploitation functions, and tuning values. As such, research on

their application to multi-robot systems is still in its infancy.

2.3.2 Heterogeneity

With heterogeneous robots, the multiple Travelling Salesman Problem becomes the

heterogeneous multiple travelling salesman problem (H-mTSP). While heterogeneous

systems are more complex than their homogeneous counterparts, there are a number

of advantages to using them. It is more cost effective to use robots with different

skill-sets, rather than outfitting every robot to have every skill. It can also be infeasible

to create a single robot with every necessary skill, such as a nimble robot that carries

enormous weights.

The H-mTSP has only been considered recently, and while some algorithms now

exist that handle some levels of heterogeneity, there are many open questions about

the effectiveness of homogeneous algorithms on heterogeneous problems, and how to

design heterogeneous robot teams [45].

One aspect all reviewed papers have in common is representing heterogeneous skill

sets using different cost vectors for each robot. In cases where robots are completely

unable to complete certain tasks (i.e. costs are infinite), these are often excluded for

selection by representing them as problem constraints.

29

2.4 Collaborative Localisation

Exact solutions with integer linear programs exist [8], and are discussed in more

detail in Section 2.3.1.

As for heuristics, auctions designed for homogeneous systems have been suc-

cessfully applied to heterogeneous systems. For example, this has been done in a

multi-robot system for healthcare facilities [46], an allocation process for dynamically

appearing tasks [47], allocation for tightly-coupled systems [15], disaster response [48].

It has also been used as part of distributed systems [49], and in a hierarchical cloud-

computed robotic systems [50]. This is despite the fact that sequential single-item

auctions lose their mathematical guarantees when applied to heterogeneous systems,

as is shown in greater detail in Chapter 3. There has not been research on whether

other auctioning techniques may be superior in heterogeneous systems.

Metaheuristics originally applied to homogeneous systems have been applied to

the heterogeneous case for many flavours of the H-mTSP problem [51–55]. Unlike

auctions, however, there is nothing to suggest that heterogeneity has not been accounted

for, as metaheuristics are tuned.

To summarise, there is potential for auctions to be improved when applied to

heterogeneous systems. In addition to this, no published works could be found for

allocating tasks to robots that can change their abilities, such as by equipping tools.

2.4 Collaborative Localisation

Collaborative (or Cooperative) localisation (CL) is the act of multiple robots helping

one another localise. Regular localisation is often done by fusing sensor data in an

Extended Kalman Filter. Consider a single robot which we wish to localise, i.e., we

30

2.4 Collaborative Localisation

Table 2.1: Variables for an Extended Kalman Filter.

Variable Description Dimension
x̂k|k State estimate (current) nx x 1

x̂k−1|k−1 State estimate (previous) nx x 1
x̂k|k−1 Predicted state nx x 1
Pk|k State covariance (current) nx x nx

Pk−1|k−1 State covariance (previous) nx x nx

Pk|k−1 Predicted state covariance nx x nx

uk Control input nu x 1
f State transition function -

Fk State transition Jacobian nx x nx

Qk State transition covariance nx x nx

zk Sensor measurement nz x 1
Rk Sensor measurement covariance nz x nz

ỹk Innovation nz x 1
Sk Innovation covariance nz x nz

Kk Kalman gain nx x nz

h Observation function -
Hk Observation Jacobian nz x nx

want to know where it is. Let’s say it started in a known position, and we have told it

to move 1 metre forwards. There are a few sources of information that we could use.

• Assume it did what it was told to do, i.e., we use the control input.

• Use a sensor to measure position.

• Estimate position from velocity. More generally, use the current state to calculate

a future state according to the robots motion model, known as state transition.

Each source of information has its own strengths and weaknesses. Control input

is always available, but does not measure what is really happening. It therefore

accumulates error, resulting in growing localisation uncertainty. Sensors measure what

is happening, but may not always be available, and may be subject to errors and noise.

State transition accumulates error, but is always available and may reflect what is really

happening, depending on how the previous state was calculated.

31

2.4 Collaborative Localisation

predicted
state

measured
state

predicted state
covariance

new
state

previous
state

measurement
covariance

previous state
covariance

new state
covariance

Fig. 2.6: A visual representation of a Kalman filter. It predicts a state from a previous
state, and fuses it with sensor measurements to form new state estimates. It requires
each state to have a covariance, which specifies the uncertainty of that state.

2.4.1 Extended Kalman Filter

Instead of picking a single source of information, a Kalman Filter fuses all of them

together. It consists of two phases. A predict phase uses control input and a state

transition to predict how the robot has moved since our last state estimate. An update

phase fuses sensor measurements into the predicted state. The fusion is a weighted

average of the predicted state and the measured state. This weighting, defined as the

Kalman gain K, is calculated from the self-reported accuracy of each state. The self-

reported accuracy is known as covariance, stored as a square matrix. A visual diagram

of Kalman filtering can be seen in Figure 2.6, and a list of variable definitions can be

seen in Table 2.1. Kalman filters operate on linear systems, but vehicle localisation is

non-linear. A non-linear extension on the Kalman filter is the Extended Kalman Filter.

The prediction equations are as follows:

x̂k|k−1 = f (x̂k−1|k−1,uk) (2.19)

Pk|k−1 = FkPk−1|k−1FT
k +Qk (2.20)

32

2.4 Collaborative Localisation

The predicted state (x̂k|k−1) is calculated by state-transitioning (f) the previous state

(x̂k−1|k−1) along with control input (uk). The predicted state covariance (Pk|k−1)

is calculated using a linear approximation of the state transition (Fk), the previous

covariance (Pk−1|k−1), and adding an error accumulation constant (Qk). The linear

approximation of the state transition is known as the state-transition Jacobian, which

is a partial derivative of the state-transition function with respect to each variable:

Fk =
∂ f
∂x

∣∣∣
x̂k−1|k−1,uk

(2.21)

The update phase consists of the steps:

Innovation: ỹk = zk−h(x̂k|k−1) (2.22)

Innovation Covariance: Sk = HkPk|k−1HT
k +Rk (2.23)

Kalman Gain: Kk = Pk|k−1HT
k S−1

k (2.24)

Updated State: x̂k|k = x̂k|k−1 +Kkỹk (2.25)

Updated Covariance: Pk|k = (I−KkHk)Pk|k−1 (2.26)

The innovation (ỹk) is the difference between the measured state (zk) and the predicted

state (x̂k|k−1), looking only at the variables that are measured by that sensor using

the observation function (h). The covariance of the innovation (Sk) uses a linear

approximation of the observation function (Hk), the predicted state covariance (Pk|k−1),

and the measurement covariance (Rk). The Kalman gain (Kk) is calculated from

the predicted state covariance (Pk|k−1), the linear approximation of the observation

function (Hk), and the innovation covariance (Sk). The new state estimate (x̂k|k) is then

calculated using a weighted average of the predicted state (x̂k|k−1) and the measured

state (zk) using the innovation (ỹk). The new state covariance (Pk|k) uses the predicted

33

2.4 Collaborative Localisation

A

B C

A

B C

a) b)

Fig. 2.7: Robots (triangles) communicate localisation information (arrows). a) The
information received by each robot is independent. b) Robot C receives duplicate
information, once from A directly, again from A through B. Special filters are required
to fuse the information appropriately.

state covariance (Pk|k−1), and lowers it according to the weighting (Kk) of the linear

approximation of the observation function (Hk).

EKFs assume that all information is independent of one another. While this is true

for most robot systems, where each source of information is from a different sensor, it

can be false when using communicated information. For example, consider Figure 2.7.

Robot A affects robot B’s localisation, which in turn will affect robot C. If all data is

treated as being independent, the result will be biased towards repeated information,

which will result in localisation overconfidence. EKFs provide guaranteed convergence

as long as the filter never becomes overconfident, meaning that this improper data

fusion is not only suboptimal, but may cause it to lose many helpful mathematical

properties. This problem is known as data incest [56]. This term is attention-grabbing,

but also rather fitting: it occurs when one uses related data in a way that should only

be done if they are not related.

34

2.4 Collaborative Localisation

2.4.2 Handling Data Incest

New algorithms have been designed to prevent data incest. The oldest such algorithm

is a centralised EKF [57]. Instead of each robot using their own EKF, a central EKF

can be used to fuse all sensor information and inter-robot observations. The state

vector (x̂) is expanded to contain the poses and twists of every robot in the system.

Information does not need to propagate from robot to robot, so it will not be duplicated.

While effective, it requires reliable and fast communication that is not scalable to

larger systems. Many algorithms use this as a benchmark for comparison.

Covariance Intersection [58, 3] is a filter that is fundamentally similar to the EKF,

but assumes all information is dependent. The same predict phase is used. For the

update phase, it still averages between the predicted and measured states, but uses a

different weighting according to a parameter ω , 0≤ ω ≤ 1. This parameter is chosen

by any standard optimisation method to minimise the trace or determinant of the

resulting state covariance (Pk|k), i.e., choose the value of ω that results in the most

likely state estimate. The update equations are as follows:

P−1
k|k = ωP−1

k|k−1 +(1−ω)R−1
k (2.27)

x̂k|k = Pk|k[ωP−1
k|k x̂k|k−1 +(1−ω)R−1

k zk] (2.28)

A graphical representation of this method is shown in Figure 2.8. Given two

estimates with covariances P1 and P2, the resulting covariance will occur within the

intersection. If P1 and P2 are completely independent, the resulting covariance will

be smaller than the intersection. If they are completely dependent, the result exactly

matches the intersection. For example, if a robot were given multiple sensor readings

of position, it should become more confident in its position, expressed as a shrinking

covariance. If instead it were given the same sensor reading repeatedly, it should not

35

2.4 Collaborative Localisation

P2

P1

0

1

ω
a) b)

Fig. 2.8: A graphical representation of fusion of multiple sources of information. a)
Two estimates with covariances P1 and P2 are fused. If they are dependent, the result
should be the intersection (shaded region). If they are independent, the result should
be smaller (dashed circle). b) The output of the Covariance Intersection algorithm,
which guarantees a Gaussian result that will never be overconfident (smaller) than the
best result. It has a parameter ω which can be used to find the resulting covariance
with the smallest size.

become more confident because it has not received new information. The resulting

covariance from Covariance Intersection can be seen in Figure 2.8. We can see that

regardless of the choice of ω , the resulting covariance will always be larger than the

intersection, hence the result will never be overconfident. The result is also guaranteed

to be Gaussian.

While it prevents data incest, it is very pessimistic in its estimations. More recently,

a split covariance intersection filter has been used [59], which splits the covariance

matrix (Pk|k) into one that stores the maximum possible dependence with other states

(Pd,k|k) and one that stores the known degree of independence (Pi,k|k). This treats

inter-robot detections as potentially dependent, while treating on-board sensors as

36

2.4 Collaborative Localisation

independent. The split covariance intersection update phase is as follows:

P1 = Pd,k|k−1/ω +Pi,k|k−1 (2.29)

P2 = Rd,k/(1−ω)+Ri,k (2.30)

Kk = P1(P1 +P2)
−1 (2.31)

x̂k|k = x̂k|k−1 +Kk(zk− x̂k|k−1) (2.32)

Pk|k = (I−Kk)P1 (2.33)

Pi,k|k = (I−Kk)Pi,k|k−1(I−Kk)
T +KkRi,kKT

k (2.34)

Pd,kk = Pk|k−Pi,k|k (2.35)

This technique can also be applied to other filters. For example, the Ensemble

Kalman Filter (EnKF) is a Monte Carlo variant of the Kalman filter which uses samples

to represent state estimates. It operates similarly to a particle filter, but assumes all

probability distributions are Gaussian. Some advantages of this format are that it

readily supports non-linear prediction and observation models, and scales better with

the size of the state vector. A Common Past-Invariant EnKF (CPI-EnKF) splits sample

sets into dependent and independent sets, in a manner similar to the covariance split

performed for Split Covariance Intersection. The CPI-EnKF can inherently retain

correlation information from the ordered random sample sets. As such, a CPI-EnKF

has shown good results for collaborative localisation [56].

Recent research has been addressing the application of these algorithms on real

systems. Real systems have information delays, non-Gaussian noise, and unreliable

detections. Recent research in this area addresses methods for lowering communication

requirements [60], applying these algorithms on real robots for improved SLAM [61]

and centralised tracking [62], and implementing these algorithms on established robot

hierarchies [63, 64].

37

2.4 Collaborative Localisation

There are still a number of unanswered questions about collaborative localisation.

Decisions regarding the number of robots, the required accuracy of sensors, the speed

of the robots, and the rate of inter-robot detections will all influence CL effectiveness.

Yet it is unclear what system properties make collaborative localisation algorithms

effective, and thus deciding how one should structure a multi-robot system to best

utilise CL.

2.4.3 Localisation with Allocation

The most common MRTA objectives, as mentioned earlier, involve minimising the

total time and energy usage required to complete all tasks. It has been noted that the

majority of studies consider the same few objective functions and constraints, despite

many other functions being relevant to industry [10]. Hence, there has been some

emerging work on problems with additional requirements. In particular, it is often

assumed that all robots can localise sufficiently well, are able to communicate at all

times, and will detect their own hardware failure. While this is true in some cases,

there are situations where robots do not have reliable GPS, are not able to report that

they are broken, and can roam beyond their communication range. This could be

accommodated by using collaboration between robots during task completion.

Literature has addressed certain problems where robots must collaborate for certain

tasks to be completed, such as transportation vehicles needing to meet at the same

location to transfer goods [65], refuelling stations only servicing one robot at a time

[66], and drones being used for short-range delivery while returning to a truck for long-

range movement [67]. These problems represent collaboration as constraints which

only require the consideration of the time of arrival at each task, and can therefore

be expressed as linear equations. It is common to use an Integer-Linear Program to

solve these problems, discussed in Section 2.3.1. ILPs can actually perform faster with

38

2.4 Collaborative Localisation

additional constraints, as it allows them to remove larger portions of the search space.

However, some constraints apply to the entirety of a robot’s path, such as ensuring

robots stay within distance of one another. These use Euclidean distance, which cannot

be represented as linear, so ILPs cannot be used.

Some research considers inter-robot distance constraints without consideration

of task allocation, i.e., all robots work to complete a single task. This includes the

optimal placement of robots to provide the best possible network connectivity [68], as

well as searching strategies while maintaining sufficient connectivity to relay video

[69]. A comparison of four communication-based exploration techniques is available,

along with a taxonomy of communication-constrained exploration types [70]. When

applied to real systems, it is common for an outer control layer to make a plan and for

an inner control layer to ensure connectivity remains strong [71, 72]. If we were to

apply these techniques to a system with multiple tasks, the robots will be much slower

and less energy efficient than a system that uses its multiple robots to complete tasks

in parallel.

Algorithms have been developed to address the problem of multi-robot task al-

location with inter-robot distance constraints. A sequential-auction based heuristic

has been created to constrain distance between robots, known as Connected Nearest

Neighbour [73], which alternates between target allocation and distance maintenance

phases. A genetic algorithm has been used to search for valid solutions, using a

customised improvement mechanism that turns solutions that exceed the inter-robot

distance into ones that do not [74]. However, both these approaches assume that robots

move in straight lines between tasks, which would potentially violate the inter-robot

distance constraint if the robots use obstacle avoidance. For example, two robots could

move different ways around an obstacle, causing them to move too far away from one

another.

39

2.5 Research Gaps and Objectives

Inter-robot distance requirements have not been sufficiently considered for multi-

robot task allocation. Forcing robots to stay near one another allows them to localise

using collaborative localisation, detect robot failure through visual detection, and

communicate new plans to handle dynamic scenarios. While some algorithms for this

problem exist, their performance is not guaranteed when applied to real robots, such

as when including collision avoidance.

2.5 Research Gaps and Objectives

As can be seen from the literature review, a number of gaps exist for heterogeneous

task allocation and collaborative localisation. Heterogeneous multi-robot systems that

require fast solutions often make use of sequential single-item auctions, which have

been designed for homogeneous systems. A heterogeneous version may be able to ex-

ploit known heterogeneity to improve solution quality. These systems also assume that

robot abilities are constant, even though it is possible for robots to alter their abilities

through tools and modular reconfiguration. Collaborative localisation is a powerful

tool for making robots robust to hardware failure, but theory is lacking quantitative

analysis on what systems properties make the best candidates for improvement using

CL. In addition, the only available task allocation algorithms that enable collaborative

localisation are insufficient for use in most real situations.

This thesis aims to fill these gaps through development towards heterogeneous task

allocation and collaborative localisation.

Objective 1: Improve the performance of sequential single-item auctions for hetero-

geneous systems

40

2.5 Research Gaps and Objectives

Many researchers have used sequential single-item auctions to find fast solutions

to the heterogeneous multiple Travelling Salesman Problem. However, they were

designed and analysed for homogeneous systems. New bidding rules and auction

resolution rules that consider heterogeneity could improve the speed and quality of

solutions found.

Objective 2: Create and characterise solution methods for systems with dynamic

heterogeneity

Heterogeneous robots are often assumed to have static capabilities. This is not true

if robots can equip and use tools as necessary, or alter their structure using modular

reconfiguration. It is unclear how available algorithms will perform for this new

problem, including auctions, metaheuristics, and integer linear programs.

Objective 3: Provide quantitative information on when collaborative localisation is

effective and efficient

Collaborative localisation algorithms have been created to properly fuse inter-robot

detections with on-board sensors. However, implementing observations, communica-

tions, and fusion is not a simple task. There is no research on what system conditions

are suitable for CL. This would be useful information to help decide whether or not a

system should implement CL.

Objective 4: Apply collaborative localisation as part of task allocation

The multiple Travelling Salesman Problem and its variants often assume that robots

can operate independently. This assumption can lead to robots becoming lost if their

sensors fail, unaware if a robot dies, and out of range to communicate information.

An algorithm that considers inter-robot distance as part of task allocation would be

beneficial in making robots more robust to these circumstances.

41

2.6 References

The following chapters consist of accepted and submitted publications addressing

each objective. As such, they each contain a brief summary of the publication, a

statement of authorship, and an objective-specific literature review.

2.6 References

[1] SG Shirinivas, S Vetrivel, and NM Elango. Applications of graph theory in

computer science: An overview. International Journal of Engineering Science

and Technology, 2(9):4610–4621, 2010.

[2] C̨aǧrı Koc̨, Tolga Bektas̨, Ola Jabali, and Gilbert Laporte. Thirty years of

heterogeneous vehicle routing. European Journal of Operational Research,

249(1):1–21, 2016.

[3] SJ Julier and Jeffrey K Uhlmann. General decentralized data fusion with covari-

ance intersection. Handbook of multisensor data fusion: theory and practice,

pages 319–344, 2009.

[4] Michail G Lagoudakis, Evangelos Markakis, David Kempe, Pinar Keskinocak,

Anton J Kleywegt, Sven Koenig, Craig A Tovey, Adam Meyerson, and Sonal

Jain. Auction-based multi-robot routing. In Robotics: Science and Systems,

volume 5, pages 343–350. Rome, Italy, 2006.

[5] Michel Gendreau and Jean-Yves Potvin. Handbook of metaheuristics, volume 2.

Springer, 2010.

[6] George Dantzig. Linear programming and extensions. Princeton university press,

2016.

[7] Hamdy A Taha. Integer programming: theory, applications, and computations.

Academic Press, 2014.

42

2.6 References

[8] Kaarthik Sundar and Sivakumar Rathinam. Algorithms for heterogeneous, mul-

tiple depot, multiple unmanned vehicle path planning problems. Journal of

Intelligent & Robotic Systems, pages 1–14, 2016.

[9] Harlan Crowder and Manfred W Padberg. Solving large-scale symmetric trav-

elling salesman problems to optimality. Management Science, 26(5):495–509,

1980.

[10] Jairo R Montoya-Torres, Julián López Franco, Santiago Nieto Isaza, Heriberto Fe-

lizzola Jiménez, and Nilson Herazo-Padilla. A literature review on the vehicle

routing problem with multiple depots. Computers & Industrial Engineering,

79:115–129, 2015.

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2009.

[12] Eric Schneider, Ofear Balas, A Tuna Ozgelen, Elizabeth I Sklar, and Simon

Parsons. Evaluating auction-based task allocation in multi-robot teams. In

AAMAS Workshop: ARMS, 2014.

[13] Michael Otte, Michael Kuhlman, and Donald Sofge. Multi-robot task allocation

with auctions in harsh communication environments. In 2017 International

Symposium on Multi-Robot and Multi-Agent Systems (MRS), pages 32–39. IEEE,

2017.

[14] Ernesto Nunes and Maria Gini. Multi-robot auctions for allocation of tasks with

temporal constraints. In Twenty-Ninth AAAI Conference on Artificial Intelligence,

2015.

[15] Gautham P Das, Thomas Martin McGinnity, and Sonya A Coleman. Simul-

taneous allocations of multiple tightly-coupled multi-robot tasks to coalitions

43

2.6 References

of heterogeneous robots. In Robotics and Biomimetics (ROBIO), 2014 IEEE

International Conference on, pages 1198–1204. IEEE, 2014.

[16] S Koenig, C Tovey, M Lagoudakis, V Markakis, D Kempe, P Keskinocak,

A Kleywegt, A Meyerson, and S Jain. The power of sequential single-item

auctions for agent coordination. In Proceedings of the National Conference on

Artificial Intelligence, volume 21, page 1625. Menlo Park, CA; Cambridge, MA;

London; AAAI Press; MIT Press, 2006.

[17] Olusegun Olorunda and Andries P Engelbrecht. Measuring explo-

ration/exploitation in particle swarms using swarm diversity. In Evolutionary

Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelli-

gence). IEEE Congress on, pages 1128–1134. IEEE, 2008.

[18] David H Wolpert and William G Macready. No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[19] Mohammad Mahdi Paydar, Iraj Mahdavi, Iman Sharafuddin, and Maghsud

Solimanpur. Applying simulated annealing for designing cellular manufacturing

systems using MDmTSP. Computers & Industrial Engineering, 59(4):929–936,

2010.

[20] Jerzy Grobelny and Rafał Michalski. A novel version of simulated annealing

based on linguistic patterns for solving facility layout problems. Knowledge-

Based Systems, 124:55–69, 2017.

[21] Lucas P Behnck, Dionisio Doering, Carlos Eduardo Pereira, and Achim Rettberg.

A modified simulated annealing algorithm for SUAVs path planning. IFAC-

PapersOnLine, 48(10):63–68, 2015.

[22] Tolgahan Turker, Guray Yilmaz, and Ozgur Koray Sahingoz. GPU-accelerated

flight route planning for multi-UAV systems using simulated annealing. In

44

2.6 References

International Conference on Artificial Intelligence: Methodology, Systems, and

Applications, pages 279–288. Springer, 2016.

[23] Alejandro R Mosteo and Luis Montano. Simulated annealing for multi-robot

hierarchical task allocation with flexible constraints and objective functions.

In Workshop on Network Robot Systems: Toward Intelligent Robotic Systems

Integrated with Environments”. IROS, 2006.

[24] Guohui Zhang, Liang Gao, and Yang Shi. A genetic algorithm and tabu search

for multi objective flexible job shop scheduling problems. In Computing, Control

and Industrial Engineering (CCIE), 2010 International Conference on, volume 1,

pages 251–254. IEEE, 2010.

[25] Qiao Zhang, Hervé Manier, and M-A Manier. A genetic algorithm with tabu

search procedure for flexible job shop scheduling with transportation constraints

and bounded processing times. Computers & Operations Research, 39(7):1713–

1723, 2012.

[26] John Willmer Escobar, Rodrigo Linfati, Paolo Toth, and Maria G Baldoquin. A

hybrid granular tabu search algorithm for the multi-depot vehicle routing problem.

Journal of Heuristics, 20(5):483–509, 2014.

[27] J-L Deneubourg, Serge Aron, Simon Goss, and Jacques Marie Pasteels. The self-

organizing exploratory pattern of the argentine ant. Journal of Insect Behavior,

3(2):159–168, 1990.

[28] Hang Zhang, Xi Wang, Parisa Memarmoshrefi, and Dieter Hogrefe. A survey

of ant colony optimization based routing protocols for mobile ad hoc networks.

IEEE Access, 5:24139–24161, 2017.

[29] Ramu Srikakulapu and U Vinatha. Optimized design of collector topology for

offshore wind farm based on ant colony optimization with multiple travelling

45

2.6 References

salesman problem. Journal of Modern Power Systems and Clean Energy, pages

1–12, 2018.

[30] Soheil Ghafurian and Nikbakhsh Javadian. An ant colony algorithm for solving

fixed destination multi-depot multiple traveling salesmen problems. Applied Soft

Computing, 11(1):1256–1262, 2011.

[31] Weiqin Wu, Yu Tian, and Tongdan Jin. A label based ant colony algorithm for

heterogeneous vehicle routing with mixed backhaul. Applied Soft Computing,

47:224–234, 2016.

[32] Sahar Trigui, Omar Cheikhrouhou, Anis Koubaa, Uthman Baroudi, and Habib

Youssef. Fl-mtsp: a fuzzy logic approach to solve the multi-objective mul-

tiple traveling salesman problem for multi-robot systems. Soft Computing,

21(24):7351–7362, 2017.

[33] Xinye Chen, Ping Zhang, Guanglong Du, and Fang Li. Ant colony optimiza-

tion based memetic algorithm to solve bi-objective multiple traveling salesmen

problem for multi-robot systems. IEEE Access, pages 21745–21757, 2018.

[34] Habibeh Nazif and Lai Soon Lee. Optimised crossover genetic algorithm for ca-

pacitated vehicle routing problem. Applied Mathematical Modelling, 36(5):2110–

2117, 2012.

[35] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and

Walter Rei. A hybrid genetic algorithm for multidepot and periodic vehicle

routing problems. Operations Research, 60(3):611–624, 2012.

[36] Ali AR Hosseinabadi, Maryam Kardgar, Mohammad Shojafar, Shahaboddin

Shamshirband, and Ajith Abraham. GELS-GA: hybrid metaheuristic algorithm

for solving multiple travelling salesman problem. In Intelligent Systems Design

46

2.6 References

and Applications (ISDA), 2014 14th International Conference on, pages 76–81.

IEEE, 2014.

[37] Lixin Tang, Jiyin Liu, Aiying Rong, and Zihou Yang. A multiple traveling

salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron

& Steel Complex. European Journal of Operational Research, 124(2):267–282,

2000.

[38] Charles J Malmborg. A genetic algorithm for service level based vehicle schedul-

ing. European Journal of Operational Research, 93(1):121–134, 1996.

[39] Arthur E Carter and Cliff T Ragsdale. A new approach to solving the multiple

traveling salesperson problem using genetic algorithms. European Journal of

Operational Research, 175(1):246–257, 2006.

[40] R Bolaños, M Echeverry, and J Escobar. A multiobjective non-dominated

sorting genetic algorithm (NSGA-II) for the multiple traveling salesman problem.

Decision Science Letters, 4(4):559–568, 2015.

[41] Shuai Yuan, Bradley Skinner, Shoudong Huang, and Dikai Liu. A new crossover

approach for solving the multiple travelling salesmen problem using genetic

algorithms. European Journal of Operational Research, 228(1):72–82, 2013.

[42] Noraini Mohd Razali and John Geraghty. Genetic algorithm performance with d-

ifferent selection strategies in solving TSP. In Proceedings of the World Congress

on Engineering, volume 2, pages 1134–1139, 2011.

[43] David S Johnson. Local optimization and the traveling salesman problem. In

International Colloquium on Automata, Languages, and Programming, pages

446–461. Springer, 1990.

47

2.6 References

[44] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T Meyarivan. A fast

and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6(2):182–197, 2002.

[45] Lynne E Parker, Daniela Rus, and Gaurav S Sukhatme. Multiple Mobile Robot

Systems, pages 1335–1384. Springer, 2016.

[46] Gautham P Das, Thomas M McGinnity, Sonya A Coleman, and Laxmidhar

Behera. A distributed task allocation algorithm for a multi-robot system in

healthcare facilities. Journal of Intelligent & Robotic Systems, 80(1):33–58,

2015.

[47] Callan Bright, Lyndon While, Tim French, and Mark Reynolds. Using market-

based optimisation to solve the dynamic vehicle routing problem. In Computa-

tional Intelligence (SSCI), 2017 IEEE Symposium Series on, pages 1–8. IEEE,

2017.

[48] Zhiyong Wang and Sisi Zlatanova. Multi-agent based path planning for first re-

sponders among moving obstacles. Computers, Environment and Urban Systems,

56:48–58, 2016.

[49] Lingzhi Luo, Nilanjan Chakraborty, and Katia Sycara. Provably-good distributed

algorithm for constrained multi-robot task assignment for grouped tasks. IEEE

Transactions on Robotics, 31(1):19–30, 2015.

[50] Lujia Wang, Ming Liu, and Max Q-H Meng. A hierarchical auction-based

mechanism for real-time resource allocation in cloud robotic systems. IEEE

Transactions on Cybernetics, 47(2):473–484, 2017.

[51] Said Salhi, Arif Imran, and Niaz A Wassan. The multi-depot vehicle routing

problem with heterogeneous vehicle fleet: Formulation and a variable neighbor-

48

2.6 References

hood search implementation. Computers & Operations Research, 52:315–325,

2014.

[52] Oscar Dominguez, Angel A Juan, Barry Barrios, Javier Faulin, and Alba Agustin.

Using biased randomization for solving the two-dimensional loading vehicle

routing problem with heterogeneous fleet. Annals of Operations Research,

236(2):383–404, 2016.

[53] Mustafa Avci and Seyda Topaloglu. A hybrid metaheuristic algorithm for hetero-

geneous vehicle routing problem with simultaneous pickup and delivery. Expert

Systems with Applications, 53:160–171, 2016.

[54] David SW Lai, Ozgun Caliskan Demirag, and Janny MY Leung. A tabu search

heuristic for the heterogeneous vehicle routing problem on a multigraph. Trans-

portation Research Part E: Logistics and Transportation Review, 86:32–52,

2016.

[55] Baozhen Yao, Bin Yu, Ping Hu, Junjie Gao, and Mingheng Zhang. An improved

particle swarm optimization for carton heterogeneous vehicle routing problem

with a collection depot. Annals of Operations Research, 242(2):303–320, 2016.

[56] Jan C̆urn, Dan Marinescu, Niall O’Hara, and Vinny Cahill. Data incest in

cooperative localisation with the common past-invariant ensemble Kalman filter.

In 16th International Conference on Information Fusion (FUSION), pages 68–76.

IEEE, 2013.

[57] Zirui Xing and Yuanqing Xia. Comparison of centralised scaled unscented

kalman filter and extended Kalman filter for multisensor data fusion architectures.

IET Signal Processing, 10(4):359–365, 2016.

49

2.6 References

[58] Simon J Julier and Jeffrey K Uhlmann. A non-divergent estimation algorithm in

the presence of unknown correlations. In American Control Conference, 1997.

Proceedings of the 1997, volume 4, pages 2369–2373. IEEE, 1997.

[59] Hao Li, Fawzi Nashashibi, and Ming Yang. Split covariance intersection fil-

ter: Theory and its application to vehicle localization. IEEE Transactions on

Intelligent Transportation Systems, 14(4):1860–1871, 2013.

[60] Leigang Wang, Tao Zhang, and Feifei Gao. Distributed cooperative localization

with lower communication path requirements. Robotics and Autonomous Systems,

79:26–39, 2016.

[61] Ryo Kurazume, Souichiro Oshima, Shingo Nagakura, Yongjin Jeong, and Yumi

Iwashita. Automatic large-scale three dimensional modeling using cooperative

multiple robots. Computer Vision and Image Understanding, 157:25–42, 2017.

[62] Mohamed W Mehrez, George KI Mann, and Raymond G Gosine. An opti-

mization based approach for relative localization and relative tracking control in

multi-robot systems. Journal of Intelligent & Robotic Systems, 83:1–24, 2016.

[63] Benedetto Allotta, Riccardo Costanzi, Enrico Meli, L Pugi, Alessandro Ridolfi,

and Gregorio Vettori. Cooperative localization of a team of AUVs by a tetrahedral

configuration. Robotics and Autonomous Systems, 62(8):1228–1237, 2014.

[64] Thumeera R Wanasinghe, George KI Mann, and Raymond G Gosine. Distributed

leader-assistive localization method for a heterogeneous multirobotic system.

IEEE Transactions on Automation Science and Engineering, 12(3):795–809,

2015.

[65] Martin Fink, Guy Desaulniers, Markus Frey, Ferdinand Kiermaier, Rainer

Kolisch, and François Soumis. Column generation for vehicle routing problems

50

2.6 References

with multiple synchronization constraints. European Journal of Operational

Research, 272:699–711, 2019.

[66] Giovanni D’Urso, Stephen L Smith, Ramgopal Mettu, Timo Oksanen, and Robert

Fitch. Multi-vehicle refill scheduling with queueing. Computers and Electronics

in Agriculture, 144:44–57, 2018.

[67] Niels Agatz, Paul Bouman, and Marie Schmidt. Optimization approaches for the

traveling salesman problem with drone. Transportation Science, 52:739–1034,

2018.

[68] Yuan Yan and Yasamin Mostofi. Robotic router formation in realistic communi-

cation environments. IEEE Transactions on Robotics, 28(4):810–827, 2012.

[69] Yuanteng Pei, Matt W Mutka, and Ning Xi. Connectivity and bandwidth-aware

real-time exploration in mobile robot networks. Wireless Communications and

Mobile Computing, 13(9):847–863, 2013.

[70] Jacopo Banfi, Alberto Quattrini Li, Nicola Basilico, and Francesco Amigo-

ni. Communication-constrained multirobot exploration: Short taxonomy and

comparative results. In Proceedings of the IROS Workshop on On-line Decision-

making in Multi-robot Coordination (DEMUR2015), pages 1–8, 2015.

[71] James Stephan, Jonathan Fink, Vijay Kumar, and Alejandro Ribeiro. Concurrent

control of mobility and communication in multirobot systems. IEEE Transactions

on Robotics, 33(5):1248–1254, 2017.

[72] Yiannis Kantaros and Michael M Zavlanos. Global planning for multi-robot

communication networks in complex environments. IEEE Transactions on

Robotics, 32(5):1045–1061, 2016.

51

2.6 References

[73] Yun Wang and Cheng Hu. Moving as a whole: multirobot traveling problem con-

strained by connectivity. Turkish Journal of Electrical Engineering & Computer

Sciences, 23(3):769–788, 2015.

[74] Guilherme Dhein, Alberto Francisco Kummer Neto, and Olinto César Bassi

de Araújo. The multiple traveling salesman problem with backup coverage.

Electronic Notes in Discrete Mathematics, 66:135–142, 2018.

52

Chapter 3

Fast Task Allocation for

Heterogeneous Robots

This chapter is focussed on improving a technique that produces very fast task allo-

cations, typically performed in real-time. These techniques are known as sequential

single-item auctions, which allocate tasks using auctions. While designed for homoge-

neous robots, they are commonly applied to heterogeneous systems. It is identified that

the standard auction rules can produce poor allocations when robots are heterogeneous.

Several other bidding and auction rules are introduced, and their performance under

a number of differing levels of heterogeneity, task distances, and system objectives

are analysed. The new auction rules illustrate consistently improved performance for

heterogeneous systems, while performing no worse for homogeneous systems. The

applicability of this technique when robots have partial knowledge of the environment

and partial communication with other robots is explored. The technique in these

conditions is guaranteed to avoid deadlock provided robots never overestimate the

other robots’ capabilities.

53

Statement of Authorship

Paper Title: Sequential Single-Item Auction Improvements for Heteroge-
neous Multi-Robot Routing

Status: Accepted on 25 Feb 2019

Details: Published in Robotics & Autonomous Systems, vol 115, pp 130-
142, 2019

Principal Author

Name: Nick Sullivan

Contribution
Details:

Performed literature review on algorithms for allocating tasks to
robots, separating them by computation time and highlighting
strengths and weaknesses regarding speed, quality of solutions,
performance guarantees, and applicability to non-linear prob-
lems. Contacted researchers who have written algorithms in
this space and implemented their algorithms in code. Tested
and observed these algorithms, discovering that auction-based
algorithms operate poorly when robots are heterogeneous. De-
veloped new auction algorithms that consider heterogeneity, and
performed relevant mathematical proof. Thought up tests to
illustrate performance and sensitivity of these algorithms in a
variety of conditions, then wrote the code for these tests. Parsed
and analysed results. Prepared the manuscript and generated all
figures.

Contribution
Percentage (%):

80

Signature: Date: 17 Mar, 2019

54

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

1. the candidate’s stated contribution to the publication is accurate (as detailed
above);

2. permission is granted for the candidate to include the publication in the thesis;
and

3. the sum of all co-author contributions is equal to 100% less the candidates stated
contribution.

Name: Steven Grainger

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 15 Mar, 2019

Name: Ben Cazzolato

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 13 Mar, 2019

55

Robotics and Autonomous Systems 115 (2019) 130–142

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Sequential single-item auction improvements for heterogeneous
multi-robot routing
Nick Sullivan ∗, Steven Grainger, Ben Cazzolato
The University of Adelaide, South Australia 5005, Australia

h i g h l i g h t s

• Limitations with traditional heterogeneous task auctioning are shown.
• New auction bidding and resolution algorithms are explored.
• Consistent and significant improvements (up to 20%) can be made.
• A new auction process is introduced for heterogeneous robots with partial knowledge.

a r t i c l e i n f o

Article history:
Received 16 August 2018
Received in revised form 10 February 2019
Accepted 25 February 2019
Available online 28 February 2019

Keywords:
Multi-robot
Path planning
Routing
Sequential auction

a b s t r a c t

We introduce new auction bidding and resolution algorithms to improve multi-robot sequential
single-item auctions for heterogeneous systems. We consider two objectives, minimising the energy
usage and time required to complete all tasks. Sequential single-item auctions are computationally
inexpensive while producing efficient task allocations for homogeneous robots, but produce less
efficient allocations for heterogeneous robots. Our algorithms provide consistent and significant (up
to 20%) improvements for both objectives for a number of scenarios relative to the standard auction
process, as tested in MATLAB simulations. Interestingly, our algorithms produce faster task completion
even in homogeneous systems. We also introduce a new algorithm for sequential single-item auctions
when robots have partial knowledge of their environment. We illustrate its improved performance
and analyse its sensitivity, showing that precise tuning is not essential for faster and more efficient
task completion. These improvements can reduce energy usage and task completion times for both
indoor and outdoor robots in a variety of fields.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The problem of Multi-Robot Task Allocation (MRTA) is fun-
damental in multi-robot systems. Given a set of tasks to be
completed and a set of robots to complete them, it is desirable
for the tasks to be allocated to the robots such that they are
completed according to a given objective. Common objectives are
to minimise energy usage (minimise the sum of all robot move-
ment, MiniSum), or to minimise time (minimise the maximum
robot movement, MiniMax). This problem exists in many fields,
such as wireless sensor networks [1], assembly [2], cleaning [3],
healthcare [4], and transportation [5].

To describe the multi-robot system using a formal taxon-
omy [6], we address systems with robots that complete one
task at a time (single-task, ST), which plan for the future (time-
extended assignment, TA), and complete tasks that require only
one robot (single-robot, SR) with interrelated utilities. Utility is

∗ Corresponding author.
E-mail address: nicholas.sullivan@adelaide.edu.au (N. Sullivan).

a robot’s ability to complete a task at a given time. We address
systems where tasks have physical locations, so a robot’s utility
for a task is dependent on the location of the previous task that
was completed.

The number of possible allocations scale factorially, making
brute-force search unusable for even a moderate number of tasks
and robots. The techniques that exist in literature trade-off be-
tween solution quality and processing time. In this research area,
a solution refers to a valid set of allocations such that all tasks are
allocated and all robots can feasibly complete them.

Exact solutions, i.e. optimal task allocations for a given objec-
tive, are found by removing non-optimal solutions from consider-
ation using techniques such as branch and cut [7]. The remaining
solutions are then searched through to find the optimal task
allocation. While optimal, these approaches take a long time to
complete at large scale and cannot be applied to non-linear ob-
jectives. In particular, it cannot be used to find the allocation that
results in the fastest completion of tasks. Solving this objective
optimally remains an open problem.

https://doi.org/10.1016/j.robot.2019.02.016
0921-8890/© 2019 Elsevier B.V. All rights reserved.

56

N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142 131

The best known algorithms for this objective are metaheuris-
tics. They are problem independent frameworks that incorpo-
rate problem-specific information to solve optimisation prob-
lems. They can be tuned to converge within certain time-limits. A
large number of metaheuristics exist, and many have been used
for task allocation, including Genetic Algorithms [8], Simulated
Annealing [9], and Ant Colony Optimisation [10]. Metaheuristics
are often seeded with solutions from faster algorithms to reduce
processing time.

The fastest algorithms to allocate tasks are known as heuris-
tics. A popular and efficient heuristic is the sequential single-item
auction [11,4,12]. One task is allocated per auction round, and
robots create new bids based on the tasks that they have received.
Robots initially have no tasks allocated to them. They then bid
on each task. The overall best bid is the winner, and a robot
is allocated the task. For each remaining unallocated task, the
robot calculates the cost of adding the task to its tour, and
bids accordingly. Another auction round is held and the process
repeats until all tasks are allocated. It has been empirically shown
to outperform other auction methods such as round-robin, or-
dered single-item auction, and parallel single-item auction [13].
Sequential single-item auctions are also guaranteed to be no
worse then twice optimal for the energy efficiency objective [14].
Because of their speed, sequential single-item auctions are com-
monly used in dynamic systems where tasks must be re-allocated
during operation [15,16].

Robots in these systems may be heterogeneous. Heterogeneity
may refer to robots that are differ structurally, such as different
speeds, or differ functionally, where they have different task
completion capabilities. We consider both structural and func-
tional heterogeneity. The motivating example is a system where
robots have a set of certain skills, such as driving, viewing, or
picking up objects. Each robot can complete a subset of tasks, and
some robots can complete certain task types faster than other
robots. While heterogeneous systems are more complex than
their homogeneous counterparts, there are advantages to using
these systems. It is more cost effective to use robots with different
skillsets, rather than outfitting every robot to have every skill. It
can also be infeasible to create a single robot with every necessary
skill, such as a nimble robot that carries enormous weights.

A robot’s ability to complete certain task types is referred to as
the robot’s expertise for those task types. If a robot does not have
the required skill to complete a task, its expertise is 0. Expertise
may be binary, representing if the robot can or cannot complete
the given task; or continuous, representing the time it takes to
complete a task relative to a baseline robot. An integer-linear
program that finds optimal allocations for the energy efficiency
objective exists for systems with binary expertise [7]. They use
fractional linear programming for ground and air vehicles in com-
bination with a branch-and-cut algorithm that selects resulting
integer solutions.

Non-optimal solutions to continuous expertise systems have
been addressed previously in a healthcare facility scenario [4].
Multiple heterogeneous robots performed tasks in various health-
care facility rooms. Sequential single-item auctions were held
to allocate tasks, with bid calculations that were scaled by the
expertise of the robots. If a robot has an expertise of 0.1, its bid
will be 10 times worse than robots with a perfect expertise of
1. These expertise values reflected skills needed in a healthcare
environment, including navigation, vision, speech, and cleaning.
There has been research on task allocation for tightly-coupled
multi-robot tasks [17]. Heterogeneous robots must form coali-
tions to complete tasks. They take into account robot expertise
to form near-optimal coalitions using a sequential auction al-
gorithm. Auction-based methods have also been developed for

task allocation with reconfigurable teams [18]. Binary hetero-
geneity has also been considered for swarms using auction-based
methods [19].

Robots have limited vision and communication. In this aspect,
heterogeneous systems produces new challenges which do not
occur in homogeneous systems. Consider such a system where
robots have limited vision range and can only communicate to
nearby robots. If these robots are functionally homogeneous, the
best solution is simply for robots to complete the tasks that they
are aware of, and search for more when they are complete. If
they are heterogeneous, however, robots that are ill-equipped for
nearby tasks may better meet the system objective by leaving
their area to search and complete other tasks.

Robot exploration has been addressed using heuristics. In [20],
robots were to explore rooms as efficiently as possible. Opening
rooms required two robots, so robots had to decide between
exploring opened rooms and opening up new rooms. The au-
thors develop a number of heuristics to determine if a given
robot should explore or open up a new area, and if the latter,
which other robot it should open it up with. These heuristics
show improved searching even when robots have limited com-
munication and environment knowledge. Another technique to
address whether robots should roam or stay is through the use
of robot behaviours. Robots are allocated to tasks based on their
local observations and perceptions. A behavioural task allocation
architecture known as ALLIANCE [21] was recently implemented
in ROS [22]. Robots in ALLIANCE make use of observations of task
progression to determine their actions. When tasks are not com-
pleted satisfactorily, impatience parameters increase, eventually
causing robots to take over from robots that are not performing
their task well.

We propose new bidding rules and auction resolution algo-
rithms to improve the performance of sequential single-item
auctions. While the commonly used algorithms work well for
homogeneous systems, it is possible for them to produce poor
results in heterogeneous systems. A simple example of this is
shown in Fig. 1. Sequential single-item auctions allocate tasks
near the robots first to procedurally generate good paths for
the homogeneous system. This hill-climbing can cause robots to
build a path in one direction, but later be required to complete
a task in a different direction, as seen in the middle column.
Inspired by game theory, our algorithms change the order that
tasks are allocated in. We first allocate tasks that have low levels
of competition, in order to avoid path-building in the wrong
direction.

In addition to the sequential single-item auction improve-
ments, we propose a new algorithm that uses sequential auctions
to decide whether robots should complete tasks they are aware
of or search for tasks they are more suited for. An internal auction
mechanism is used by each robot to predict if an unknown robot
is more suitable for a task, and if so, it will ignore that task.
This algorithm acts as an extension to sequential single-item
auctions. We then experimentally analyse sensitivity and prove
that deadlock (where all robots think that another will complete
a task) cannot occur.

Following the introduction and literature review in Section 1,
we define the problem and objectives in Section 2. The sequential
single-item algorithms are specified in Section 3, which describe
the bidding and auction resolution process. The simulation is de-
scribed in Section 5. Section 6 outlines the experiments, including
the four types of heterogeneous and homogeneous scenarios that
are tested. Vision and communication constraints are applied in
Section 4, which introduces and analyses our partial knowledge
algorithm. The results of these experiments are found in Sec-
tions 7 and 8, along with worst-case and sensitivity analysis. The
limitations of our algorithms are discussed in Section 9, followed
by a conclusion in Section 10.

57

132 N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142

Fig. 1. An example of how tasks are allocated using the standard Lowest Bid (LB), versus the introduced Fewest Bids (FB). The robots (large circles) must form paths
to complete all tasks (black dots), while minimising total energy usage (MiniSum objective). There are also tasks that can only be completed by particular robots
(diamonds). The top row shows the allocation after 15 iterations. LB does not prioritise early inclusion of these special tasks. FB allocates the special tasks first,
resulting in lower energy usage.

2. Problem definition

We first define terms used to describe multi-robot task al-
location. Consider a heterogeneous set of robots with ID’s R =

{1, 2, . . . , n} and initial positions (depots) D = {d1, d2, . . . , dn},
and a set of tasks, T = {t1, t2, . . . , tm}. We form a graph with
vertices V = D ∪ T , and edges E consisting of a set of edges
joining any two vertices in V . The cost function for a robot r ∈ R
to traverse an edge e ∈ E is cre . The cost includes the time taken to
travel to the task, as well as the time taken to complete the task
once the robot has arrived. A binary vector yri specifies whether or
not robot r completes task i. A binary vector xre specifies whether
or not robot r traverses edge e. This is the variable we are solving
for. A function δ() takes nodes as an input, and returns edges that
are connected to those nodes. Specifically, δ(S) = {(i, j) ∈ E : i ∈

S, j /∈ S} takes a set of vertices and returns all edges that connect
vertices in the set with vertices that are not in the set. The special
case, δ(i), takes a single vertex i ∈ V and returns all edges it is
connected to.

We focus on two team objectives, minimising energy usage
and minimising task completion time [11].

MiniSum: Minimise the sum of robot path costs over all robots.
MiniMax: Minimise the maximum robot path cost over all

robots.

The problem can be formalised as follows:

minimise
n∑

r=1

∑
e∈E

crex
r
e (MiniSum) (1)

minimise
n

max
r=1

∑
e∈E

crex
r
e (MiniMax) (2)

Subject to the following constraints:

xrδ(i) = 2yri ∀i ∈ T , r ∈ R (3)

xrδ(S) ≥ 2yri ∀i ∈ S, S ⊆ T , r ∈ R (4)
n∑

r=1

yri = 1 ∀i ∈ T (5)

xre ∈ {0, 1} ∀e ∈ Et , r ∈ R (6)

xre ∈ {0, 1, 2} ∀e ∈ Er , r ∈ R (7)

yri ∈ {0, 1} ∀i ∈ T , r ∈ R (8)

Eqs. (1) and (2) specify two objective functions, which is to
minimise the sum of all costs (energy efficiency objective) or to
minimise the maximum cost (shortest time objective). We solve
each objective separately. Eq. (3) ensures that exactly two con-
nected edges are used for each vertex for the robot that completes
that task (one for moving to the task, one for moving away from
it). All other robots should not use edges connected to that vertex.
Eq. (4) is known as a sub-tour elimination constraint. This pre-
vents solutions involving robots teleporting between locations.
This particular sub-tour elimination constraint forces all vertex
subsets to be connected to the rest of the vertices. Eq. (5) ensures
that each task is completed by one robot. Eq. (6) ensures that
edges between tasks are used 0 or 1 times, because the optimal
solution will never use the same edge more than once between
tasks. This is a consequence of the triangle inequality property.
Eq. (7) ensures that edges connected to a robot start position are
used 0, 1, or 2 times. 0 for if the robot is not used. 1 for if the robot
completes multiple tasks. 2 for if the robot completes a single
task. Eq. (8) ensures that tasks are completed by a given robot 0
or 1 times.

An edge e can be referred to as the movement between two
vertices (i, j). Some of the introduced algorithms require splitting
the edge cost cre into the travel cost tcr(i,j) and the base cost bcj.
The travel cost is the Euclidean distance between the two vertices
divided by robot speed. The base cost for a task j is denoted bcj,
which is independent of the robot completing it. In a system with

58

N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142 133

functionally heterogeneous robots, robots have different abilities
to complete tasks. We refer to a robot’s ability to complete a task
as a robot’s expertise for that task, 0 ≤ λr

j ≤ 1. Base costs are
normalised such that expertise values lie between 0 and 1.

The cost function we use for a robot r to traverse edge (i, j) is:

cr(i,j) =

{
tcr(i,j) + bcj/λr

j , j ∈ T
tcr(i,j), j ∈ D (9)

To clarify Eq. (9), if a robot is returning to its start position, the
edge cost is the time it takes the robot to move. If a robot is
completing a task, the edge cost is the time it takes the robot
to move to the task location plus the time it takes to complete
that task.

The expertise value acts to inflate task completion time, rep-
resenting robots requiring different amounts of time to perform
a given task. For example, two cleaning robots may take the
same amount of time to move to a room, but the larger robot
with more arms will be able to clean it faster. Expertise can
be 0, so certain tasks may have infinite costs to complete. This
implies that robots may be unable to complete some tasks. We
assume that for each task there is at least one robot with non-
zero expertise. This cost function representation does not violate
any previous assumptions, satisfies the triangle inequality, and
applies to realistic robotic scenarios.

3. Multi-robot task allocation algorithms

In auction-based methods, robots may prompt an auction at
any time to re-allocate tasks. This may be when new tasks are
discovered, if a robot has stopped responding, or if any other dy-
namic change occurs. The prompting robot becomes the auction-
eer and will hold multiple auction rounds. One task is allocated
each auction round to the robot with the winning bid. Bids are
independently calculated by the robots each auction round.

Every time robots are allocated a task, they extend their path.
We make use of the insertion heuristic [23]. Given a (possibly
empty) initial path, it will insert a task in the path at a position
that creates the smallest extra cost. It is guaranteed to produce a
path that is less than twice the cost of the optimal path when the
triangle inequality holds and is on average 25% worse. It is used
in sequential auctions due to its ability to incrementally build
a path, rather than being re-built each auction round. While it
is possible to use an optimal solver for this component, optimal
solvers take much more time. This is not desirable as paths must
be recalculated multiple times each auction.

In our implementation, we hold reverse auctions, where the
lowest bidder wins. Robots bid task-completion costs, and the ob-
jective of the auction is to minimise the cost. This is functionally
equivalent to a standard auction.

To participate in a sequential single-item auction, robots need
two decision-making algorithms: A bidding algorithm to deter-
mine bids for each task, and an auction resolution algorithm to
determine which task is allocated each round.

3.1. Bidding algorithms

Robots must independently calculate bids for each task in each
auction round. The bidding algorithm determines what tasks they
bid on, and how much they bid. In each round, there is a set of
unallocated tasks, and robots have (initially empty) paths.

1. MiniSum [11] This algorithm was created as a means to
achieve the MiniSum objective. Every task is bid on. The
bidding amount is determined by the following:

• Calculate the cost of completing currently allocated
tasks

• Calculate the cost of completing both the currently
allocated tasks and the task being bid on

• The bid is the difference between these two costs

This bidding method will cause tasks to be allocated to
robots that can complete them with the smallest extra cost.

2. MiniMax [11] This algorithm was created as a means to
achieve the MiniMax objective. Every task is bid on. The
bidding amount is determined by the following:

• Calculate the cost of completing both the currently
allocated tasks and the task being bid on

• The bid is the cost of this new path

This bidding method will cause tasks to be allocated some-
what evenly between robots.

3. MiniAve [11] This algorithm often produces solutions that
are a balance between MiniSum and MiniMax. Every task is
bid on. The bidding amount is determined by the following:

• Calculate the cumulative cost of completing currently
allocated tasks

• Calculate the cumulative cost of completing both the
currently allocated tasks and the task being bid on

• The bid is the difference between these two costs

These algorithms are standard, and were developed for homo-
geneous systems, but can be immediately applied to heteroge-
neous ones. As mentioned previously, the cost function will be
infinite for tasks that a robot is unable to complete. A bid of
infinity is perfectly acceptable and is treated as the robot not
being able to complete the task. When applying these bidding
algorithms in heterogeneous systems, they do not necessarily
produce solutions as close to optimal as in homogeneous ones.
This is shown in Fig. 1. In this figure it can be seen that the
auction resolution algorithms do not take into account functional
heterogeneity, and while they perform well for homogeneous
systems, they do not form good solutions for the heterogeneous
example. To improve on these bidding algorithms, we introduce a
sequential single-item auction algorithm that takes into account
the functional heterogeneity of robots. This algorithm is built on
top of the existing ones and use the same bidding values. They
cause tasks to be allocated in a different order.

4. RelativeExpertiseFirst (REF) Robots do not bid on every
unallocated task every round. Rather, they bid on the tasks
that they are functionally well suited for relative to other
robots. This algorithm only specifies which tasks the robot
should bit on, the values are calculated using an underly-
ing bidding algorithm, such as the traditional MiniMax or
MiniAve. The pseudo-code for this algorithm is shown in
Algorithm 1. Calculations of relative expertise and maxi-
mum relative expertise are defined by Eqs. (10) and (11)
respectively.

relative expertisert =
λr
t∑

s∈R λs
t

(10)

max relative expertiser = max
t∈U

λr
t∑

s∈R λs
t

(11)

where robot r is bidding on a set of unallocated tasks
U ⊆ T . This algorithm prioritises allocating tasks to robots
that are functionally capable of completing them. It then
bids on more common tasks afterwards, until all tasks
are allocated. This algorithm is expected to produce larger
travel times in order to obtain decreased task completion
times.

59

134 N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142

Fig. 2. An example of how tasks are allocated using the standard Lowest Bid (LB), versus the introduced Least Contested Bid (LCB). The robots (large circles) must
form paths to complete all tasks (black dots), while minimising task completion time (MiniMax objective). The top row shows the allocation after 20 iterations. LB
causes paths to grow outwards from each robot. LCB causes paths to grow away from one another, resulting in faster task completion.

Algorithm 1 RelativeExpertiseFirst (REF)
1: // Robot r ∈ R is bidding on unallocated tasks t ∈ U
2: // with expertise λr

t .
3: procedure REF Bidding Algorithm
4: // Calculate relative expertise.
5: for all t ∈ U do
6: sumexpt =

∑
s∈R

λs
t ▷ sum of expertises

7: relexpt = λr
t/sumexpt ▷ relative expertise

8: end for
9: relexpmax = max

t∈U
relexpt ▷ max relative expertise

10: // Submit bids.
11: for all t ∈ U do
12: if relexpt == relexpmax then
13: bidt = (underlying bidding algorithm)
14: else
15: bidt = ∞ ▷ do not bid for this task
16: end if
17: end for
18: end procedure

3.2. Auction resolution algorithms

The robot that prompts an auction becomes the auctioneer,
and must be capable of determining which tasks to allocate to
which robots based on their bids. It is standard for this to be the
lowest bid:

1. Lowest Bid (LB) [11] This is the standard sequential auction
resolution algorithm. The auctioneer takes the overall low-
est bid and assigns that task to its bidder. As a consequence

of this, robots only need to communicate their lowest bid
to the auctioneer.

We offer new auction resolution algorithms:

2. Biggest Bid Difference (BD) The auctioneer allocates a
task with the largest difference between the minimum and
maximum bids. There may be one or more tasks that have
the largest difference in bids, but only one task is allocated.
The robot that submits the lowest bid to one of these
tasks will be assigned a task. Unlike Lowest Bid, robots
must submit bids on all tasks. The reasoning behind this
algorithm is to prioritise early allocation of tasks that some
robots are unable or ineffective at completing.

3. Fewest Bids (FB) The auctioneer allocates a task with the
fewest bids. There may be one or more tasks that have
the fewest bids, but only one task is allocated. The robot
that submits the lowest bid to one of these tasks will be
assigned a task. Robots must submit bids on all tasks that
they can complete. The reasoning behind this algorithm is
to prioritise early allocation of tasks that few robots are
capable of completing. If robots are homogeneous, this is
identical to Lowest Bid.

4. Least Contested Bid (LCB) Allocates the task which has the
largest difference between the lowest bid and second low-
est bid. In the event of a tie, the task with the overall lowest
bid is assigned. The reasoning behind this algorithm is to
prioritise early allocation of tasks that can be completed
much better by one robot.

4. Partial knowledge

The algorithms in the previous Section assume robots have
full knowledge of tasks and robots. This allows them to auc-
tion, allocate tasks, and form paths at the very beginning. They

60

N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142 135

Fig. 3. Homogeneous robots with limited vision and communications completed
location-based tasks in a 100 × 100 m area. The robots used random searching
to find undiscovered tasks. The standard deviation of time of two system ob-
jectives (MiniSum, MiniMax) were calculated for each communications distance,
then compared to the standard deviation for the same system where robots have
full communication. This is used to determine at what range random searching
dominates results.

then execute those paths without requiring re-allocation. This is
representative of environments where communication is readily
available, such as warehouses, healthcare facilities and farms.

It may be the case that robots do not have full connectivity,
leaving them to operate under partial knowledge. In the next
set of experiments, robots have finite visual and communication
capabilities. They must re-allocate and form new paths based
on the discovery of tasks. This is representative of environments
where communication is not widely available and tasks may
be unknown, such as environmental monitoring, transport, and
defence. All robots are provided the total number of tasks in
the environment, to prevent infinite roaming once all tasks are
completed.

To extend on this, we perform experiments where robots
are initially given partial global knowledge. They are aware of
task types and robot expertise, but not the locations of tasks
and robots. This provides robots with an interesting problem of
whether they should complete tasks they are aware of, or to
roam to find tasks they can complete at a lower cost. It is not
unreasonable to assume that robots may have this information;
robots often have some idea of the type of tasks they are looking
for, and what other robots are in the system.

The vision and communication range was selected experimen-
tally using the homogeneous scenario, as can be seen in Fig. 3.
We did not want random search to dominate task completion
times, because we are not testing search strategies. We plot
the normalised standard deviation of path costs against vision
and communication range. The normalised standard deviation is
the standard deviation for a given vision and communications
range divided by the standard deviation when the robots have
infinite vision and communications range. An increase in standard
deviation indicates that robots are roaming more. There is a sharp
increase of standard deviation when reducing vision and com-
munication range beneath 4 m. Therefore, we selected a range
of 40 m for all tests involving robots with partial knowledge.

4.1. Bidding algorithm

We introduce a new bidding algorithm for robots operating
with local knowledge. This algorithm is built on top of any stan-
dard bidding algorithm that assumes full knowledge, such as
those listed in Section 3.

StayOrRoam (SOR) This algorithm is designed for robots oper-
ating with partial knowledge of tasks and robots. It uses informa-
tion of heterogeneous expertise to choose whether a robot should
stay and complete tasks it knows about, or roam to find tasks that
it is more suited for. At the start of an auction (now referred to
as an external auction), every participating robot performs their
own internal auction process, where they estimate the bids from
robots that are not within communication range. If a robot thinks
that another robot can complete a task at a lower cost (i.e. a robot
loses its own internal auction), it will not bid for that task in the
external auction.

• Before bidding, the robot performs an internal parallel auc-
tion

• Each robot considers themselves as B units closer to the
task than other robots with known capabilities but unknown
position, where B is a value set by the user

• Known tasks are allocated using the bidding method in
Eq. (12)

• For any tasks that the robot does not win in the internal
auction, the robot will not bid on in the external auction

• Once all robots have completed their internal auctions, the
external auction proceeds as a standard sequential auction

For each robot r ∈ R, there will be a subset of other robots
A ⊂ R that participate in the same auction, and a subset of robots
Ā ⊂ R that do not participate in that auction. For each known task
t , Robot r located at node i produces internal bids for each robot
s ∈ R according to the following rules:

bidst =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bct
λr
t
, s = r

B +
bct
λs
t
, s ∈ Ā

∞, s ∈ A

(12)

In general terms, Eq. (12) splits internal bids into three cate-
gories: the robot holding the internal auction; robots participat-
ing in the external auction; and robots not participating in the
external auction. The pseudo-code for StayOrRoam is shown in
Algorithm 2.

In the StayOrRoam algorithm, each robot performs an internal
auction, estimating the bids of other robots that are not within
communication range. After the internal auctions, the robots per-
form an external auction (a standard sequential auction). If a
robot loses its internal auction, it will not bid on that task in the
external auction. If every robot loses its internal auction, then no
robot will bid on that task in the external auction, resulting in the
task never being completed. To avoid this, we require that at least
one robot wins its internal auction. The robot with the highest
expertise for a task will always win its internal bid, provided we
select B to be greater than 0. Therefore, at least one robot will bid
on each task, and deadlock will not occur. This then guarantees
that every task will be allocated to a robot.

We select:

B = max(C − tcr(i,t), 0.0001) (13)

Where C is an estimate of the distance between an unknown
robot and the task being bid on. This information is unknown,
so we instead use a constant (C = 60 for our experiments). In
Section 8.5 we illustrate the sensitivity of C selection. Addition-
ally, if all robots are within communication range, this algorithm
is equivalent to its underlying bidding algorithm in Section 3
(e.g. MiniMax, MiniSum, MiniAve)

61

136 N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142

Algorithm 2 StayOrRoam (SOR)
1: // Robot r ∈ R is bidding on unallocated tasks t ∈ U
2: // with expertise λr

t . There are other robots in the auction A
3: // and robots outside of communication range Ā.
4: procedure SOR Bidding Algorithm
5: // Internal auction (estimating other robots bids).
6: for all t ∈ U do
7: for all s ∈ R do ▷ r estimating bids from s
8: if s == r then
9: ibids

t = bct/λr
t

10: else if s ∈ A then ▷ in the external auction
11: ibids

t = ∞

12: else ▷ not in the external auction
13: C = estimated distance between s and t
14: tcr(i,t) = distance between r and t
15: B = max(C − tcr(i,t), 0)
16: ibids

t = B + bct/λs
t

17: end if
18: end for
19: winnert = argmin

s∈R
ibids

t ▷ winning robot for t

20: end for
21: // External auction (communicated with other robots).
22: for all t ∈ U do
23: if winnert == r then
24: bidt = (underlying bidding algorithm)
25: else
26: bidt = ∞ ▷ do not bid for this task
27: end if
28: end for
29: end procedure

The StayOrRoam algorithm will take slightly longer to process
than sequential single-item auctions with full knowledge. For a
system with N tasks and M robots, sequential single-item auc-
tions with full knowledge involve each robot bidding on N tasks
for N rounds, with the auctioneer resolving M bids for N rounds,
resulting in a time order of O(N2

+ M ∗ N). The StayOrRoam
algorithm involves extra internal auctions, where every round
robots bid on behalf of robots they cannot communicate with,
resulting in a total time order of O(M ∗ N2

+ M ∗ N).

5. Simulation

Simulations were performed using a Multi-Robot Task Allo-
cation (MRTA) system written in MATLAB at The University of
Adelaide [24]. MATLAB was chosen for its deterministic results.
Simulations are identical barring the change in task allocation
algorithms.

The simulation flow can be seen in Fig. 4. The user specifies the
robot details. This includes the names of the bidding algorithm
and auction resolution algorithm discussed in Section 3. The sim-
ulator also requires robots expertise for the different skill types in
the form of a vector of values between 0 (cannot complete) and 1
(can complete perfectly). Sensor information is also provided. In
particular, the range and sweep angle that robots can see tasks
and other robots, and the range that robots can communicate
with one another.

Then the simulation enters the Run stage. Each loop consists
of several segments. Firstly, robot sensors provide information
of task and robot locations. This paper does not intend to ad-
dress stochastic knowledge, so it is assumed that robots can
perfectly identify robots and tasks, as well as completion status
and position. If robots wish to communicate, a communication

Fig. 4. The software diagram for the multi-robot task allocation simulation,
written in MATLAB.

message is sent to nearby robots. These messages include all
known robots, task information, as well as timestamps of when
each piece of information was last updated. If robots wish to start
an auction, all robots within the local communication network
are informed. A communication network includes the auctioneer,
robots within communication distance to the auctioneer, robots
within communication distance to those robots, etc. All bids
are communicated to the auctioneer, and resulting task alloca-
tions are communicated to all bidders. This process repeats until
the auctioneer does not request another auction round. Finally,
robots have their poses updated according to their desired pose
and physics limitations. This loop repeats until the simulation is
complete or times out.

62

N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142 137

5.1. Robots

Robots store information about tasks and other robots. They
keep track of IDs, types, locations, completion statuses, and times-
tamps of when they learned new information. They update their
information whenever they receive information from their sen-
sors, or if they receive a message with newer information. As
described previously, the robots choose what and when to com-
municate and if they want to start an auction. They raise commu-
nication and auction flags whenever a trigger is activated. Robots
raise the communication flag for any of the following:

• They have not communicated in the last five seconds

– This is a communication heartbeat, used to regularly
distribute information across a network of robots [25,
26]

• They learn of a new task
• They learn of a new robot
• They learn that a task has been completed

Robots raise the auction flag for any of the following:

• They learn of a new task
• They learn that a task has been allocated to more than one

robot
• There is an unallocated task that they want to complete

The intention of these rules is to propagate important information
without using excessive bandwidth. If robots have knowledge
of all robots and task locations, this results in a single auction.
The allocations from this auction are then carried out without
any further auctioning. If the robots have limited vision and
communication range, however, new auctions will be held as a
response to new information.

This paper does not specifically consider robots that become
unable to complete tasks they have been allocated, but this can
easily be accommodated as long as it can be detected e.g. the
robot reports it or robots monitor each other. This would prompt
a new auction so that the task will be re-allocated. Auction-
based methods are well-suited for these systems where tasks
can be re-allocated, as they are processed faster than alternative
methods.

6. Experiments

Four robots are simulated in a 100 × 100 m area. In this area,
50 tasks exist that must be completed. The robots must complete
all tasks and return to their starting positions. The position of
the robots and tasks are randomised at the start of each sample
run. Each algorithm is sampled 200 times to find an average and
standard deviation. Four scenarios are compared:

1. Heterogeneous Specialists

• There are five task types. One task type can be com-
pleted by all robots. The other four can only be com-
pleted by each robot respectively.

• This is representative of multi-robot systems with
particularly hard and easy tasks. The hard tasks re-
quire specialised robots, while the easy tasks can be
completed by any robot.

2. Heterogeneous Random Expertise

• There are five task types. All task types have uni-
formly random expertise values, from 0 to 1. There
are 10 tasks for each task type.

Table 1
Expertise table for scenario 3: specialists with overlapping expertise.

Task 1 Task 2 Task 3 Task 4 Task 5

Robot 1 1 0 rand rand rand
Robot 2 0 1 0 rand rand
Robot 3 rand 0 1 0 rand
Robot 4 rand rand 0 1 rand

Table 2
Auction resolutions and bidding rules.
Algorithm Type

Auction resolution Lowest Bid (LB),a Biggest Difference (BD), Fewest Bids
(FB), Least Contested Bid (LCB)

Bidding rules MiniSum,a MiniMax,a MiniAve,a 3xRelativeExpertiseFirst
(REFSum, REFMax, REFAve)

aStandard in sequential single-item auctions.

• This is representative of multi-robot systems with
robots which are capable of all tasks but have dif-
fering levels of capability. It indicates the average
performance of the algorithms under a wide variety
of heterogeneity.

3. Heterogeneous Specialists with Overlapping Expertise

• There are five task types. Robots 1 to 4 have perfect
expertise for tasks 1 to 4 respectively. They also have
no expertise for some tasks, and random expertise for
the remaining tasks. This can be viewed in Table 1.

• This is representative of multi-robot systems with
robots that have specialised capabilities, but also some
level of ability to complete other tasks as well. This
can be seen in systems which aim to improve relia-
bility and robustness through overlapping expertise.
When a specialised robot breaks or becomes inun-
dated with too many tasks, other robots are capable
of assisting, despite having inferior capabilities.

4. Homogeneous

• While we focus on heterogeneous scenarios, it is de-
sirable for the algorithms to not produce inefficient
or slow task allocations in the homogeneous case, as
a heterogeneous system can result in a homogeneous
scenario.

• In this experiment, there is only one task type. All
robots have perfect expertise for this task.

7. Results — full knowledge

Four scenarios are tested, as discussed in Section 6. A total of
24 combinations of auction types were tested for each scenario,
as listed in Table 2. Robots have knowledge of all other robots
and tasks, so a single auction process is performed at the start of
each experiment.

Each experiment is repeated with different task base costs. To
keep the results generalised, results are presented as a function
of the portion of time spent travelling. The benchmark algo-
rithms are MiniSum(LB) and MiniMax(LB) for the energy effi-
ciency and completion time objectives respectively. Only the
best-performing algorithms are presented graphically. Optimal
solutions are presented for the homogeneous and specialist sce-
narios, but could not be calculated easily for the others, as this
remains an open problem. A brief discussion of the auction types
that are not graphed are presented here:

63

138 N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142

Fig. 5. Multiple robots completed location-based tasks using sequential single-item auctions to allocate tasks. The time taken to complete a task once arrived was
altered. The experiments were done for two objectives: minimise the sum of all robot times (top), and minimise the maximum robot time (bottom). Four scenarios
were compared: robots with different, non-overlapping abilities (far-left); robots with randomised abilities (middle-left); robots with different, overlapping abilities
(middle-right); and robots with identical abilities (right). The performance of different sequential single-item auctions (listed in Table 2) are compared to the standard.

• MiniAve consistently produced results in between MiniMax
and MiniSum, as expected.

• REFSum was consistently worse than MiniSum.
• REFAve was consistently worse than MiniAve.

7.1. Heterogeneous specialists

In the case of heterogeneous specialists, optimal solutions
were able to be found for the energy efficiency objective using
a integer-linear program [7]. The results for this scenario can be
seen in the far-left column of Fig. 5. Note the different legends for
the two objectives. All introduced algorithms (BD, FB, LCB, REF)
produce similar and significant improvements for both objectives.
In this scenario, tasks have big bid differences, a small number of
bids, uncontested bids, and high relative expertise. This means
that all algorithms produce very similar task allocation ordering.

It can also be seen that cost reduction tends to increase in
magnitude as more time is spent travelling between tasks. This
result may be unintuitive, one might expect that the usage of
algorithms made to take into account differing task costs would
perform best when base task costs are significant. The reasons
against this are twofold: firstly, large base task costs produce
large path costs, so even if the net cost reduction is large, the
percent cost reduction will not necessarily be large as well. Sec-
ondly, when the portion of time spent travelling is low, the order
in which tasks are allocated becomes less important.

7.2. Heterogeneous random expertise

The results for the heterogeneous random expertise scenario
can be seen in the middle-left column of Fig. 5. Both MiniSum(BD)

and MiniSum(LCB) produce worse paths than the benchmark
MiniSum(LB), while MiniSum(FB) produces identical results. For
the time objective, MiniMax(LCB) performs the best, producing
consistently superior paths. REFMax(LB) produces similar paths
when the majority of time is spent completing tasks rather than
travelling, and produces significantly worse results when travel-
ling time is large. MiniMax(BD) can be slightly better or slightly
worse than the benchmark, while MiniMax(FB) produces identi-
cal results to the benchmark.

7.3. Heterogeneous specialists with overlapping expertise

The results for the heterogeneous specialists with overlapping
expertise scenario can be seen in the middle-right column of
Fig. 5. For the energy usage objective, MiniSum(FB) outperforms
the others and shows consistent improvement, roughly twice as
much as MiniSum(BD) and MiniSum(LCB). For the time objec-
tive, MiniMax(LCB) shows the most improvement. Once again,
REFMax(LB) performs well when not much time is spent trav-
elling. MiniMax(FB) shows the opposite, it performs well when
almost all time is spent travelling. MiniMax(BD) shows small
improvements.

7.4. Homogeneous

The results for the homogeneous scenario can be seen in the
far-right column of Fig. 5. For the energy usage objective, Min-
iSum(BD) and MiniSum(LCB) performed worse than the bench-
mark MiniSum, while MiniSum(FB) produced identical results.
For the time objective, MiniMax(LCB) produced significant im-
provement. This result was unexpected, but it can be seen that

64

N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142 139

Fig. 6. A heat-map illustrating the how much faster tasks are completed using
the Least Contested Bid (LCB) algorithm over the standard Lowest Bid (LB). Each
rectangle is an average of 100 randomly generated scenarios in a 100 × 100
area.

Fig. 7. The scenario counter-proof for the upper limit of the Lowest Bid (LB)
algorithm in heterogeneous scenarios. Four robots and three tasks are arranged
above, with the expertise table specifying the tasks that each robot can complete.

changing the order in which tasks are allocated can offer sig-
nificant improvement even in the homogeneous scenario. Mini-
Max(BD) also produced improvement, and MiniMax(FB) and REF-
Max(LB) produced identical results to the benchmark.

To further analyse the performance of MiniMax(LCB) in the
homogeneous scenario, the number of robots and tasks were
changed, and the results are averaged over 100 randomly gen-
erated tasks. The results are shown in Fig. 6. At low numbers of
robots and tasks, MiniMax(LCB) offers very slight improvement
over the standard algorithm. As the complexity of the problem in-
creases, however, MiniMax(LCB) shows significant improvement.

In summary, these algorithms have been shown to offer sig-
nificant and consistent cost reduction for sequential single-item
auctions. MiniSum(FB) and MiniMax(LCB) outperformed other al-
gorithms for energy efficiency objective and fastest time objective
respectively. Examples of these algorithms are shown in Figs. 1
and 2.

7.5. Worst case performance

It is useful to identify the worst possible performance of the
introduced algorithms, as the standard Lowest Bid algorithm

provides guarantees on performance. In particular, MiniMax will
be less than 2n times optimal cost, where n is the number of
robots, and MiniSum will be less than 2 times the optimal cost.
The proofs are detailed elsewhere [11], but the basic idea for the
energy usage objective is:

• A minimum spanning forest is guaranteed to be less than or
equal to an optimal solution.

• Incrementally adding cheapest edges will create a minimum
spanning forest (Prim’s algorithm).

• A robot increasing its path using a cheapest edge will in-
crease its path cost by at most two times the cheapest edge
(triangle inequality).

• Therefore incrementally adding cheapest edges will produce
robot paths that are less than two times the optimal cost.

• The edges selected by Lowest Bid (LB) are the cheapest
edges.

• Therefore LB will produce solutions within two times opti-
mal.

This proof only applies to homogeneous case. We offer a simple
counter example to show how a heterogeneous system can have
a cost greater than two times optimal when using the standard
auction resolution algorithm. Consider a system with four robots
and three tasks, as shown in Fig. 7. The optimal solution is clearly
for robot 4 to complete all three tasks, resulting in a total path
length of 22. Allocating the lowest bids, however, would allocate
robot 1 to task 1, robot 2 to task 2, and robot 3 to task 3.
This results in three path lengths of 20, producing a sum of 60.
60/22 > 2, and it is clear that we could increase the number of
robots and tasks to create arbitrarily bad solutions.

The Fewest Bids (FB) algorithm has consistent worst-case per-
formance to the standard Lowest Bid (LB). When applied to a
homogeneous system, the algorithms act identically. When ap-
plied to heterogeneous systems, neither have an easily provable
upper limit.

For the MiniMax case, however, the upper limit proof for Least
Contested Bid does not apply it does not necessarily select the
cheapest edge. This is not particularly significant as the original
upper limit is 2n, which is a loose upper bound.

8. Results partial knowledge

Robots with partial knowledge do not initially have infor-
mation of the location of tasks and robots. They may discover
tasks and robots when they are within range. Four scenarios are
tested, as discussed in Section 6. The tested algorithms are listed
in Table 3. Graphs are presented with varying base task costs.
The benchmark algorithms are MiniAve(LB) and MiniMax(LB) for
the energy usage and time objectives respectively. The reason
for MiniAve(LB) is because it consistently outperformed Min-
iSum(LB).

With limited sensing and communication, the algorithms are
4% (when robots spend all their time travelling) and 26% (when
robots spend most of their time completing tasks) less energy
efficient than with full knowledge (MiniSum objective). They are
between 2.4% (when robots spend all their time travelling) and
9.2% (when robots spend most of their time completing tasks)
slower than with full knowledge (MiniMax objective).

A brief discussion of the auction types that are not graphed
are presented here:

• MiniSum was consistently worse than MiniAve.
• REFSum was consistently worse than MiniSum.
• REFAve was consistently worse than MiniAve.

65

140 N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142

Fig. 8. Multiple robots completed location-based tasks using sequential single-item auctions to allocate tasks. The time taken to complete a task once arrived was
altered. Robots had limited sensing and communication. The experiments were done for two objectives: minimise the sum of all robot times (top), and minimise
the maximum robot times (bottom). Four scenarios were compared: robots with different, non-overlapping abilities (far-left); robots with randomised abilities
(middle-left); robots with different, overlapping abilities (middle-right); and robots with identical abilities (right). The performance of different sequential single-item
auctions (listed in Table 3) are compared to the standard.

Table 3
Auction resolutions and bidding rules for robots with partial knowledge.
Algorithm Type

Auction resolution Lowest Bid (LB),a Biggest Difference (BD), Fewest Bids
(FB), Least Contested Bid (LCB)

Bidding rules MiniSum,a MiniMax,a MiniAve,a 3xRelativeExpertiseFirst
(REFSum, REFMax, REFAve), 3xStayOrRoam (SORSum,
SORMax, SORAve)

aStandard method used in sequential single-item auctions.

8.1. Heterogeneous specialists

The results for this scenario can be seen in the far-left column
of Fig. 8. In the specialist scenario, SORMax(LB) performs the
same as the benchmark, and SORMax(LCB) performs the same as
MiniMax(LCB). This is because all tasks can either be completed
equally by all robots or only completed by one robot. It can
be seen that using LCB produces the shortest paths for both
objectives.

8.2. Heterogeneous random expertise

The results for this scenario can be seen in the middle-left
column of Fig. 8. For the random expertise scenario, we can see
that SORAve(LB) and SORAve(LCB) show improvement over the
benchmark and over MiniAve(LCB). REFMax(LB) shows the same
falloff seen earlier. SORMax(LCB) is equally good as REFMax(LB)
at low travelling times, but does not have the significant cost
increases at high travelling times. SORMax(LB) performs slightly

worse than SORMax(LCB) but still better than the benchmark.
MiniMax(LCB) shows slight improvement.

8.3. Heterogeneous specialists with overlapping expertise

The results for this scenario can be seen in the middle-right
column of Fig. 8. This shows similar results to the previous
scenario. StayOrRoam consistently reduces path costs for both
objectives.

8.4. Homogeneous

The results for this scenario can be seen in the far-right col-
umn of Fig. 8. For the homogeneous objective, REF and SOR
perform identically in the homogeneous case, as it depends en-
tirely on the auction resolution algorithm for performance, hence
the different legend. For the MiniMax objective, MiniMax(LCB)
is slightly better than the benchmark, while the others are all
consistently worse than standard. This result is the same for the
MiniSum objective but to a much smaller extent.

In summary, StayOrRoam has been shown to offer signif-
icant and consistent cost reduction for sequential single-item
auctions under partial knowledge conditions. SORAve(LCB) and
SORMax(LCB) outperformed other algorithms for the MiniSum
and MiniMax objective respectively.

It would be possible to manufacture an example for an ar-
bitrarily large amount of improvement. For example, consider
robots in rooms filled with tasks for which they have very low
expertise, but incredibly high expertise for the tasks in the room
next to them. Nevertheless, improvement was shown for realistic
scenarios.

66

N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142 141

Fig. 9. The tuning value C for the StayOrRoam (SOR) algorithm is varied for
multiple robots. For clarity, only four values are shown. Linear interpolation
between these values are accurate estimates for the true results. Two system
objectives are tested: minimise the sum of robot times (top), and minimise the
maximum robot time (bottom).

8.5. Tuning sensitivity

The StayOrRoam algorithm was introduced in Section 4, in-
cluding a tuning value C . Fig. 9 shows various values of C to
show how sensitive this tuning value is, using the heterogeneous
scenario: specialists with overlapping expertise. The lower limit
for C is 0, which would cause robots to always roam unless they
have the maximum expertise out of any robot. There is no upper
limit for C , but as it approaches infinity the robots will never
choose to roam.

For C = 0, it produces poor results when the majority of
time is spent travelling. The robots always think that unknown
robots are nearby, so they end up roaming far too much. It does,
however, produce very good results for low levels of time spent
travelling. For C = 200, robots always think that unknown robots
are very far away, so they stay unless there are other robots that
are significantly better at completing a task. The best value in this
case was C = 60, as it had the best improvements without ever
being worse than the base case. Other cases are not shown, but
they closely match interpolation between the cases presented.

In short, if C is overestimated then there is less improvement
over the standard algorithms, but the improvement is much more
reliable.

9. Algorithm limitations

While the introduced auction resolution algorithms have been
shown to produce lower cost paths than the benchmark algo-
rithms, as seen in Fig. 5, they are not without their limitations.
A common change for highly dynamic systems is to limit the
path length [4]. The concept behind this is that if the system is
changing unpredictably, then planning too far ahead is redundant.
The introduced algorithms do not necessarily allocate nearby
tasks first; if used with a limited path length, this can result in
very bad solutions.

The StayOrRoam algorithm relies on accurate information
about robot and task expertise. This may not be the case. If there
is a known expertise uncertainty, deadlock can be prevented by
ensuring B is greater than the maximum uncertainty. It may also
be worthwhile to occasionally prompt robots to check that the
knowledge of other robots is still valid.

10. Conclusion

We have introduced and analysed new bidding rules and auc-
tion resolution algorithms that show improved performance over
standard sequential single-time auctions. For robots with global
information, the use of auction resolution algorithms Fewest-Bids
(FB) and Least-Contested-Bid (LCB) for the energy usage and fast
completion objectives show significant and consistent improve-
ments for heterogeneous scenarios. Interestingly, LCB produces
reduced path costs even for homogeneous systems.

We also introduced StayOrRoam, a sequential single-item auc-
tion algorithm for systems where robots have partial task and
robot knowledge. Robots decide whether to stay and complete
the tasks known to them, or roam to find more suitable tasks.
While it would be possible to create a scenario that exploits this
for an arbitrary amount of benefit, we show that it outperforms
the standard algorithms for realistic expertise values. We also
show that accurate tuning of this algorithm is not required to
obtain consistent improvements.

These algorithms have a positive impact on the performance of
multi-robot systems requiring fast task allocation, or as seeds for
metaheuristics that provide better solutions as the cost of pro-
cessing time. Robots use less energy, allowing them to perform
their tasks longer. Task completion time is reduced, improving
overall performance of multi-robot systems. These algorithms are
easy to implement, and do not require much adjustment from
the traditional sequential single-item auction techniques in use
today.

Acknowledgements

We would like to thank Dr. K. Sundaar (Los Alamos National
Laboratory, New Mexico), for his help calculating optimal solu-
tions to minimise the sum of all robot times.

This research was supported by the Phoenix High Performance
Computing (HPC) service at the University of Adelaide, an Aus-
tralian Government Research Training Program (RTP) Scholarship,
and by the Commonwealth of Australia (represented by the De-
fence Science and Technology Group) through a Defence Science
Partnerships agreement.

References

[1] Peng Yang, Randy A. Freeman, Geoffrey J. Gordon, Kevin M. Lynch,
Siddhartha S. Srinivasa, Rahul Sukthankar, Decentralized estimation and
control of graph connectivity for mobile sensor networks, Automatica 46
(2) (2010) 390–396.

[2] Ross A. Knepper, Todd Layton, John Romanishin, Daniela Rus, Ikeabot:
An autonomous multi-robot coordinated furniture assembly system, in:
Robotics and Automation, ICRA, 2013 IEEE International Conference on,
IEEE, 2013, pp. 855–862.

[3] Emaad Mohamed H. Zahugi, Mohamed M. Shanta, T.V. Prasad, Design of
multi-robot system for cleaning up marine oil spill, Int. J. Adv. Inf. Technol.
2 (4) (2012) 33.

[4] Gautham P. Das, Thomas M. McGinnity, Sonya A. Coleman, Laxmidhar
Behera, A distributed task allocation algorithm for a multi-robot system
in healthcare facilities, J. Intell. Robot. Syst. 80 (1) (2015) 33–58.

[5] Paolo Toth, Daniele Vigo, Vehicle Routing: Problems, Methods, and
Applications, SIAM, 2014.

[6] G. Ayorkor Korsah, Anthony Stentz, M. Bernardine Dias, A comprehensive
taxonomy for multi-robot task allocation, Int. J. Robot. Res. 32 (12) (2013)
1495–1512.

67

142 N. Sullivan, S. Grainger and B. Cazzolato / Robotics and Autonomous Systems 115 (2019) 130–142

[7] Kaarthik Sundar, Sivakumar Rathinam, Algorithms for heterogeneous, mul-
tiple depot, multiple unmanned vehicle path planning problems, J. Intell.
Robot. Syst. (2016) 1–14.

[8] Shuai Yuan, Bradley Skinner, Shoudong Huang, Dikai Liu, A new crossover
approach for solving the multiple travelling salesmen problem using
genetic algorithms, European J. Oper. Res. 228 (1) (2013) 72–82.

[9] Lucas P. Behnck, Dionisio Doering, Carlos Eduardo Pereira, Achim Rettberg,
A modified simulated annealing algorithm for SUAVs path planning,
IFAC-PapersOnLine 48 (10) (2015) 63–68.

[10] Xinye Chen, Ping Zhang, Guanglong Du, Fang Li, Ant colony optimization
based memetic algorithm to solve bi-objective multiple traveling salesmen
problem for multi-robot systems, IEEE Access (2018).

[11] Michail G. Lagoudakis, Evangelos Markakis, David Kempe, Pinar Ke-
skinocak, Anton J. Kleywegt, Sven Koenig, Craig A. Tovey, Adam Meyerson,
Sonal Jain, Auction-based multi-robot routing, in: Robotics: Science and
Systems, vol. 5, 2005, pp. 343–350, Rome, Italy.

[12] Maitreyi Nanjanath, Maria Gini, Repeated auctions for robust task
execution by a robot team, Robot. Auton. Syst. 58 (7) (2010) 900–909.

[13] Eric Schneider, Elizabeth I. Sklar, Simon Parsons, A. Tuna Özgelen, Auction-
based task allocation for multi-robot teams in dynamic environments,
in: Conference Towards Autonomous Robotic Systems, Springer, 2015, pp.
246–257.

[14] Sven Koenig, C. Tovey, M. Lagoudakis, V. Markakis, David Kempe, Pinar
Keskinocak, A. Kleywegt, Adam Meyerson, Sonal Jain, The power of
sequential single-item auctions for agent coordination, in: Proceedings of
the National Conference on Artificial Intelligence, vol. 21, 2006, p. 1625,
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

[15] Eric Schneider, Elizabeth I. Sklar, Simon Parsons, A. Tuna Ozgelen, Auction-
based task allocation for multi-robot teams in dynamic environments,
in: Conference Towards Autonomous Robotic Systems, Springer, 2015, pp.
246–257.

[16] Callan Bright, Lyndon While, Tim French, Mark Reynolds, Using market-
based optimisation to solve the dynamic vehicle routing problem, in:
Computational Intelligence, SSCI, 2017 IEEE Symposium Series on, IEEE,
2017, pp. 1–8.

[17] Gautham P. Das, Thomas Martin McGinnity, Sonya A. Coleman, Simultane-
ous allocations of multiple tightly-coupled multi-robot tasks to coalitions
of heterogeneous robots, in: Robotics and Biomimetics, ROBIO, 2014 IEEE
International Conference on, IEEE, 2014, pp. 1198–1204.

[18] Zack Butler, Jacob Hays, Task allocation for reconfigurable teams, Robot.
Auton. Syst. 68 (2015) 59–71.

[19] Muhammad Irfan, Adil Farooq, Auction-based task allocation scheme
for dynamic coalition formations in limited robotic swarms with het-
erogeneous capabilities, in: Intelligent Systems Engineering, ICISE, 2016
International Conference on, IEEE, 2016, pp. 210–215.

[20] Torsten Andre, Christian Bettstetter, Collaboration in multi-robot explo-
ration: To meet or not to meet? J. Intell. Robot. Syst. 82 (2) (2016)
325.

[21] Lynne E. Parker, Alliance: an architecture for fault tolerant, cooperative
control of heterogeneous mobile robots, in: Proceedings of the IEEE/RSJ/GI
International Conference on Intelligent Robots and Systems, vol. 2, IEEE,
1994, pp. 776–783.

[22] Wallace Pereira Neves dos Reis, Guilherme Sousa Bastos, Implementing
and simulating an alliance-based multi-robot task allocation architecture
using ROS, in: Latin American Robotics Symposium, Springer, 2016, pp.
210–227.

[23] Gregory Gutin, Abraham P. Punnen, The Traveling Salesman Problem and
Its Variations, volume 12, Springer Science & Business Media, 2006, pp.
398–399.

[24] Nick Sullivan, Steven Grainger, Ben Cazzolato, Robust heterogeneous multi-
robot routing for low-intelligence agents, in: Proceedings of Australasian
Conference on Robotics and Automation, ACRA, ARAA, 2017.

[25] Joseph W. Durham, Ruggero Carli, Paolo Frasca, Francesco Bullo, Discrete
partitioning and coverage control for gossiping robots, IEEE Trans. Robot.
28 (2) (2012) 364–378.

[26] Eduardo Feo Flushing, Luca M. Gambardella, Gianni A. Di Caro, On
decentralized coordination for spatial task allocation and scheduling in
heterogeneous teams, in: Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems, International Foundation for
Autonomous Agents and Multiagent Systems, 2016, pp. 988–996.

Nick Sullivan received his bachelor degrees in mecha-
tronics engineering and computer science from the
University of Adelaide, Australia, in 2016. He is cur-
rently working toward the Ph.D. degree in robotics
at the University of Adelaide. His research interests
include multi-robot task allocation, unmanned ground
vehicles, and machine learning.

Steven Grainger obtained his Ph.D. on the control
of electric drives from Glasgow Caledonian Univer-
sity, Scotland and holds B.E. degrees in computing
and electronic engineering. He is a lecturer in Control
and Embedded Systems at the University of Ade-
laides School of Mechanical Engineering. His current
research interests include nanopositioning systems and
autonomous vehicles.

Ben Cazzolato received his B.E. in mechanical engi-
neering at the University of Adelaide, Australia, in
1990. At the same university, he received his Ph.D.
in the field of active control for sound transmission
in 1998. He is currently a professor at the University
of Adelaide, teaching and researching in the fields
of dynamics and control. Current research interests
include modelling of complex electro-mechanical sys-
tems, control of unstable vehicles, active control and
nano-positioning.

68

Chapter 4

Task Allocation for Robots with

Adaptive Heterogeneity

In this chapter, three techniques are developed for allocating tasks to multiple robots

that can change their abilities. For example, they may pick up or put down a tool from

the tool rack, or alter their physical structure. Adaptations to sequential single-item

auctions and Genetic Algorithms (GAs) allow the problem to be solved directly. It is

shown that it is important to consider whether or not the tools are restricted to given

tasks, or can be used on multiple tasks as ‘general-purpose’ tools. This is important

because general-purpose tools introduce a significant number of solutions that may

make it harder to find desirable solutions. A transformation is introduced that converts

the problem into a traditional Heterogeneous Multiple Travelling Salesman Problem

(H-mTSP). The transformation is guaranteed to maintain the optimal solution under

certain, easily calculable, general-purpose tool conditions. Finally, the algorithms

are applied to a publicly available dataset for quantitative comparisons with other

techniques.

69

Statement of Authorship

Paper Title: Algorithms for Multi-Robot Routing with Adaptive Heterogene-
ity

Status: Submitted for publication

Details: Submitted to Journal of Heuristics, 9 July 2018

Principal Author

Name: Nick Sullivan

Contribution
Details:

Performed literature review on algorithms for allocating tasks to
robots, separating them by computation time and highlighting
strengths and weaknesses regarding speed, quality of solutions,
performance guarantees, and applicability to non-linear problems.
Discovered the lack of research on algorithms where robots can
change their capabilities. Developed adaptations to auctions
and genetic algorithm to solve these problems. Developed a
transformation to convert the problem into a standard one, and
performed the mathematical proof to show when this is optimal.
Developed tests to illustrate performance and benchmark these
algorithms in a variety of conditions, then wrote the code for
these tests. Parsed and analysed results. Prepared the manuscript
and generated all figures.

Contribution
Percentage (%):

80

Signature: Date: 17 Mar, 2019

70

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

1. the candidate’s stated contribution to the publication is accurate (as detailed
above);

2. permission is granted for the candidate to include the publication in the thesis;
and

3. the sum of all co-author contributions is equal to 100% less the candidates stated
contribution.

Name: Steven Grainger

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 15 Mar, 2019

Name: Ben Cazzolato

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 13 Mar, 2019

71

Algorithms for Multi-Robot Routing with Adaptive Heterogeneity

Nick Sullivan1, Steven Grainger, Ben Cazzolato

The University of Adelaide, Australia

Abstract

This paper presents and compares methods for solving the multi-robot routing optimisation problem when robots can
adjust their abilities through tool changes or modular reconfiguration. A transformation is used to convert the problem
to a standard multi-robot routing problem, where state of the art algorithms can then be applied. An easy to calculate
bound is provided to prove when optimality is preserved in this transformation. Adaptations to sequential auctions
and genetic algorithms have been created to solve the problem without transformation, and are empirically compared
to illustrate their performance. Finally, we benchmark these algorithms using a public dataset for future quantitative
comparisons.

Keywords: Travelling Salesman Problem, multi-robot routing, task allocation

1. Introduction

In multi-robot systems, robots are used to complete
tasks. In this paper, we consider tasks with spatial loca-
tions. To complete these tasks, robots must move to the
task locations according to planned routes. It is trivial5

to generate routes that complete all tasks, but non-trivial
to generate routes that complete all tasks while optimis-
ing system objectives such as speed or energy efficiency.
The multi-robot routing problem, therefore, is interested
in finding routes that complete all tasks while minimising10

(or maximising) system objectives within an acceptable
time frame. This is fundamentally an optimisation prob-
lem.

Multi-robot routing is an example of the Multiple Trav-
elling Salesmen Problem (mTSP) and the Multiple Depots15

Vehicle Routing Problem (MDVRP), which are NP-hard
problems [1]. The difficulty lies in the large number of pos-
sible routes, where brute-force search is unusable for even
moderately-sized problems. Therefore, a number of tech-
niques exist that trade-off between solution quality and20

processing time.
Exact solutions, i.e. optimal solutions, can be found

through techniques that reduce the number of searchable
routes while ensuring the optimal route remains within the
search. This allows optimal solutions to be found orders25

of magnitude faster than brute ofrce. The most common
exact formulation is as an integer linear program, which
has been applied to this problem for over 30 years [2].
While optimal, such approaches are unable to find solu-
tions quickly at large scale and cannot be used for certain30

∗Corresponding author
Email address: nicholas.sullivan@adelaide.edu.au (Nick

Sullivan)

problems. It is possible to find the solution that minimis-
es the total distance travelled (MiniSum), but finding the
solution that minimises the longest path (MiniMax) re-
mains an open problem. More recent research deals with
additional constraints and multiple objectives [1].35

A variety of heuristics have been used to find solu-
tions very quickly at the cost of optimality. Rather than
searching for solutions as a standard optimisation prob-
lem, these often operate by greedily making locally good
choices in the hope that it will result in globally good so-40

lutions. Popular heuristics in robotics use market-based
allocation, where robots are able to buy and sell tasks
from one another. The more efficiently a robot can com-
plete a task, the more it is willing to bid for that task.
This leads to tasks being allocated to robots that can ef-45

ficiently complete them. Different types of market-based
allocation have been explored, including sequential single-
item auctions [3] which allocates tasks one at a time to the
robots with the lowest bids. This is fast and efficient rel-
ative to other heuristics [4, 5]. Combinatorial auctions [6]50

allocate combinations of tasks each round and can theoret-
ically find optimal solutions. But due to a large number of
possible combinations, it is not practical to auction every
combination of tasks. After allocation, robot to robot task
selling [7] can be performed to adjust to uncertainty, but55

does not scale well.
Metaheuristics are problem independent frameworks

that incorporate problem-specific information to solve op-
timisation problems. They operate using two procedures,
exploration and exploitation [8]. Exploitation applies lo-60

cal improvements, which are quick but limited by local
optima. Exploration finds new, different solutions as a
means to overcome these local optima. Metaheuristics at-
tempt to balance the two procedures to operate quickly

Preprint submitted to Journal of Applied Soft Computing June 6, 2018

72

Objective
Cost

(smaller is

better)

Valid Solutions

Current
Solution

Exploitation

Exploration

Solution Space

Figure 1: Metaheuristics use exploitation to improve upon solutions,
and exploration to generate brand new solutions. These are used
to efficiently find good solutions for optimisation problems that are
difficult to solve within required time-frames.

and robustly. A graphical representation of this process65

can be seen in Figure 1. Metaheuristics have been used
for a large number of optimisation problems, such as wind
energy conversion [9], market pricing [10], and crowd e-
vacuation [11]. Recently, there has been much research
attention on applying these metahueristics to the multi-70

robot routing problem.
Thus far, no metaheuristic has been been accepted as

the best for multi-robot routing. Genetic algorithms [12]
are inspired by biological evolution. An initial population
of solutions are randomly generated. New solutions are75

generated through breeding and mutation. The best so-
lutions survive to the next generation and the process is
repeated. After many generations, the population is likely
to consist of good solutions. Genetic algorithms are one
of the most popular metaherustics for multi-robot routing80

problems [13, 14, 15].
Other meta-heuristics include Simulated Annealing [16],

where the searching jumps according to a heat value that
starts hot and cools over time. This is one of the oldest and
simplest metaheuristic, but has also recently been used for85

applications such as manufacturing layout design [17] and
UAV inspections [18].

Wolf Pack Algorithm [19], is based on the pack be-
haviour of wolves in nature. Wolves that find good solu-
tions search nearby solutions, and wolves that do not find90

good solutions head towards the wolves that do. This has
been used for UAV routing [20] and transit network design
[21].

Ant Colony Optimisation is a metaherustic inspired by
ants [22]. Simulated ants produce pheromones and over95

time, the shortest paths will have the strongest pheromones.
While ant colony optimisation has seen the most success
in dynamic problems such as ad-hoc networks [23], they
have also been applied to multi-robot routing [24, 25].

These meta-heuristics act as any-time algorithms, they100

can be stopped at any point and still provide a solution.
In practice, they still require extensive tuning to converge

upon good solutions shortly before the desired completion
time. Nevertheless, they can provide good solutions within
a custom amount of time.105

Recently, the multi-robot routing problem has also been
considered for heterogeneous systems, i.e., the Heteroge-
neous Multiple Travelling Salesmen Problem (H-mTSP)
and the Heterogeneous Multiple Depots Vehicle Routing
Problem (HMDVRP). Heterogeneous systems are preva-110

lent in the real world, even for systems which are designed
as homogeneous. A homogeneous fleet can become hetero-
geneous through state, such as a robot equipping a tool or
using up its battery. It can also occur through hardware
failure and wear and tear over time. A designer may even115

choose to create a heterogeneous system to improve effi-
ciency. Robotic systems that are designed through evolu-
tion often result in specialisation, and usually outperfor-
m those that are evolved with homogeneous restrictions
[26, 27]. Heterogeneous systems are more robust if the120

robots have a certain level of capability overlap, as this
allows other robots to complete tasks under instances of
high demand or robot failure. This concept is known as
degeneracy [28].

Heterogeneity can refer to structural heterogeneity (e.g.125

a robot moves faster than another), or functional hetero-
geneity (e.g., a robot can complete a task that another
robot cannot). There is plentiful research for systems with
structural heterogeneity [29], but far less research on func-
tional heterogeneity. We consider functional heterogeneity130

in this paper, where some robots do not have the capability
to complete certain tasks. Heterogeneity can be reflected
as binary, representing if the robot can or cannot complete
a given task; or continuous, representing the extra time it
takes to complete a task relative to a baseline robot.135

An optimal solution exists for systems where robots
have binary heterogeneity using fractional linear program-
ming with a branch-and-cut algorithm [30]. This process,
coupled with off-the-shelf optimisation software, finds po-
tential solutions that meet relaxed non-integer constraints,140

and then tighten the constraints to form valid solutions.
Partial solutions that cannot outperform the current best
solution are cut to improve search speed.

Sequential single-item auctions have been used to allo-
cate robots in a healthcare scenario, where the robots had145

continuous heterogeneity [31]. The heterogeneity reflected
differing capabilities to perform tasks such as navigation,
vision, speech and cleaning. No adaptations were made
to the core sequential single-item auction algorithm, illus-
trating that it can be used ‘as is’ for heterogeneous sys-150

tems. Our previous work has shown that alterations to the
auction resolution process provide improved performance
for heterogeneous systems [32], however this was limited
to static heterogeneity. Ant-colony optimisation has been
used for deliveries with a heterogeneous fleet, where they155

showed using heterogeneous vehicles is 9.2% more effective
than homogeneous vehicles for China Post of Guangzhou
[24].

One instance that has not been considered in depth

2

73

is the possibility of heterogeneity that can deliberately160

change throughout the task completion process. For exam-
ple, when a robot picks up a hammer, it gains the ability
to push in a nail. Tool manipulation was a large factor
in the 2015 DARPA robotics challenge [33], where robots
had to use handheld tools and fire hoses to successfully165

complete their mission. This type of problem also exist-
s in tool-swaps for furniture assembly [34], cleaning and
delivery [35], and cooking [36]. A common solution is to
distribute tools at the start to match demand so that tool
changing does not need to be considered [34]. This solu-170

tion will clearly not work for cases where there are more
tools than robots. This problem will need to be considered
in order to create robots that are able to operate in human
environments.

Heterogeneity can also be deliberately changed through175

modular reconfiguration. Robots are being designed that
can detach limbs as needed in large facilities [37], and
change between wheels and legs for robust space explo-
ration [38]. A review paper on different types of modular
robotics and their characteristics and applications is avail-180

able [39]. Determining when these robots should change
form is critical for efficient task completion.

The possibility of deliberately changing heterogeneity
has not been considered for the general heterogeneous multi-
robot routing case. The rest of the paper is outlined as185

follows.
In Section 2 we provide a definition that includes the

option to change abilities. A transformation that convert-
s the problem into a standard heterogeneous multi-robot
routing problem is described in Section 3. Sections 4 and190

5 describe the sequential auction and genetic algorithm
adaptations respectively. Section 6 provides a worst-case
analysis of the previous algorithms. These algorithms are
empirically tested in experiments described in Section 7,
with an analysis of experimental results in Section 8. Tab-195

ulated results for benchmarking are discussed in Section
9. The paper is concluded in Section 10.

2. Dynamic Heterogeneous Multi-Robot Routing
Definition

We first define terms used to describe the system. Con-200

sider a set of robots with ID’s R = {1, 2, . . . , n} and initial
positions D = {d1, d2, . . . , dn}, and a set of task positions,
T = {t1, t2, . . . , tm}.

A robot route, or path, of length l consists of l tasks
that the robot is to visit and complete, pr = {t1, t2, . . . , tl}.205

Solutions to the multi-robot routing problem require n
routes (one for each robot) which result in all tasks be-
ing completed exactly once.

We form a graph with vertices V = D∪T , and edges E
joining any two vertices in V . The cost function to traverse210

an edge e ∈ E is ce. We wish for all tasks to be visited
by at least one robot while minimising a system objective.
We focus on two independent objectives [3]. The first ob-
jective, MiniSum, aims to minimise the sum of robot path

costs over all robots. This is synonymous with completing215

tasks such that energy usage is minimised. The second
objective, MiniMax, aims to minimise the maximum path
cost. This is synonymous with completing all tasks in the
fastest possible time.

To extend on this problem, we assume there are a set220

of tools with ID’s TO = {to1, to2, . . . , toa} which can be
equipped by any robot. Each robot can equip at most one
tool at a time, and we assume there are sufficient copies of
tools. Tools are equipped by moving to a tool rack, which
have positions TR = {tr1, tr2, . . . , trb}. Each vertex v ∈ V225

can only be visited if the robot has equipped a valid tool
for that vertex. Robots must return their tool to a tool
rack before returning home.

3. Transformation

At first glance, one might consider treating a tool swap230

as a task in itself. This makes some logical sense, to com-
plete the task ‘dig hole’ one might first need to complete
the task ‘get shovel’. If one were to pursue this repre-
sentation, the set of vertices would include tool racks; al-
l edges between tasks that require different tools would235

be removed; edges between tool racks and other vertices
would be added; and vertices would be able to be visited
multiple times. This introduces two significant changes.
Firstly, the graph is no longer complete, making many al-
gorithms unable to be used, although some algorithms do240

exist for incomplete graphs [40]. Secondly, we would be un-
able to rule out a vertex once it has been visited. This pro-
duces an infinite number of valid solutions making many
solution techniques inapplicable in their current form. For
sequential single-item auctions, outlined in Section 4, there245

would be no guarantee that the auctions would ever fin-
ish. For genetic algorithms, outlined in Section 5, visiting
vertices multiple times would cause the genome to grow.
This creates an infinite number of poor solutions that can
be searched, decreasing the likelihood of finding good so-250

lutions. For integer programming formulations, some of
the constraints used are no longer applicable, resulting in
a large (potentially infinite) increase in computation time.

Instead of treating tool swaps as tasks, we introduce a
transformation that converts the problem into a standard
multi-robot routing problem. We couple tool swaps with
the tasks such that triangle inequality is maintained. It
is inspired by a common transformation used to convert a
graph without triangle inequality into one that does, using
the FloydWarshall algorithm [41]. Triangle inequality is
the property that for any three vertices i, j, k ∈ V ,

cij < cik + ckj (1)

i.e., if a robot at vertex i wishes to go to vertex j, it is
never quicker to detour to vertex k. If we have a TSP255

where this is not the case, we can check every combination
of i, j, k ∈ V , and replace edge costs with the smallest costs
between two vertices. In essence, the use of a lower-cost

3

74

detour is built into the cost. For tool swaps, we undergo
a similar process.260

For each edge e ∈ E between vertices i, j ∈ V , we
adjust the cost:

cij =

{
cij , toi = toj
cij + swapcost, toi 6= toj

(2)

The cost is altered if a different tool is required for a giv-
en task. This process is outlined in Algorithm 1. For
each edge, the use of each tool rack is compared, and the
one producing the shortest cost is used. Following this
transformation, we have a standard (but non-Euclidean)265

multi-robot routing problem with finite edge costs. The-
orem 1 shows that for a set of vertices (start locations,
tasks, tool racks) that obey the triangle inequality (with-
out yet considering tool constraints), the transformation
will maintain the triangle inequality while applying tool270

constraints. When a robot traverses an edge that requires
a tool change, it implies a tool swap. The cost for this tool
swap is inherently included in the edge cost. To transfor-
m the multi-robot routing problem back into a tool-based
multi-robot routing problem, we must record which edges275

were altered, and with what tool rack. For the reverse
transformation, we follow each tour and replace each edge
with the required tool swap. The reverse transformation
is also outlined in Algorithm 1. Examples of a solution
that has been transformed, solved, and transformed back280

are shown in Figures 2 and 3.

Algorithm 1 Tool Transformations

1: procedure Routing w/ Tools -> Routing
2: for all (i, j) ∈ E do
3: if toi 6= toj then . swap is required
4: mincostswap← inf
5: mincostrack ← −1
6: for all tr ∈ TR do . select best rack
7: a← ci,tr + swapconst+ ctr,j
8: if a < mincostswap then
9: mincostswap← a

10: mincostrack ← tr
11: cij ← cij +mincostswap
12: racksused(i, j)← mincostrack
13: else
14: racksused(i, j)← −1

15: procedure Routing -> Routing w/ Tools
16: for all (i, j) ∈ path do
17: rack = racksused(i, j)
18: if rack 6= −1 then
19: path.insert(rack)

Theorem 1. Consider a set of vertices consisting of tasks
i, j, k and tool racks trx that obey the triangle inequality,
i.e., for any vertices a, b, c, ca,b ≤ ca,c + cc,b.

When tool requirements are included, triangle inequal-

Figure 2: The process to transform between a multi-robot routing
with tools problem and a standard multi-robot routing problem. a)
A graph consisting of a robot (green circle), a tool rack (square), and
tasks (*), with given edge costs. b) The tool swap costs are included
into the relevant edges as outlined in Algorithm 1. c) Routes are
generated. d) The problem is transformed back.

ity is maintained if:

ci,tr1 + ctr1,j ≤ ci,k + ck,tr1 + ctr1,j (3)

ci,tr1 + ctr1,j ≤ ci,tr1 + ctr1,k + ck,j (4)

Through cancellation this becomes:

ci,tr1 ≤ ci,k + ck,tr1 (5)

ctr1,j ≤ ctr1,k + ck,j (6)

Which are both true given the triangle inequality of the
vertices. If we consider multiple tool racks, Algorithm 1
shows that a different tool rack tr2 will be used if and only
if:

ci,tr2 + ctr2,j ≤ ci,tr1 + ctr1,j (7)

Hence, a different tool rack being used will decrease the285

left hand sides of Equations (3) and (4). Therefore tri-
angle inequality is maintained when tool requirements are
included.

While the transformation assumes task-tool pairs, tool
selection is not always that simple. It is possible that mul-290

tiple tools may be able to complete the task with vary-
ing effectiveness. A hammer is an ideal tool for a nail,
but any hard object with a flat surface could do the job.
This means that there are multiple options for edge cost-
s, depending on the tool that was used previously. The295

transformation is unable to be applied in this case with-
out losing some solutions.

One could simply disregard inferior tools, e.g., do not
ever use a flat rock to hammer the nail, only use the ham-
mer. While this would allow the transformation to be300

used, hence allowing the use of current state-of-the-art al-
gorithms, it disregards solutions that may be more effec-
tive, e.g., the hammer is very far away, and the robot is
already holding a rock. In Section 6, we provide a bound
that, if met, guarantees that the optimal solution will be305

maintained in the transformation for MiniSum and Min-
iMax. We also offer two adaptations to algorithms that

4

75

Figure 3: A multi-robot routing with tools problem has been transformed to a standard multi-robot routing problem and solved (left), then
transformed back (right). The three robots (circles) form path plans to complete tasks (+ and *). They must make use of tools located at
tool racks (squares), and return the tools before returning to their start location.

solve the multi-robot routing problem with tools problem
directly. These can be found in Sections 4 and 5.

4. Sequential Auction310

Many popular heuristics use auction-based allocation
to quickly distribute tasks to robots. Robots bid on tasks,
and an auctioneer allocates tasks based on robot bids. Se-
quential single-item auctions allocate one task per auction
round, and robots create new bids based on the tasks that315

they have received. Robots initially have no tasks allocat-
ed to them. They then bid on each task. The overall best
bid is the winner, and a robot is allocated the task. For
each remaining unallocated task, the robot calculates the
cost of adding the task to its tour, and bids accordingly.320

Another auction round is held and the process repeats un-
til all tasks are allocated. It has been empirically shown to
outperform other auction methods such as round-robin, or-
dered single-item auction, and parallel single-item auction
[4, 5]. Sequential single-item auctions also offer a guar-325

antee of closeness to optimal for minimising the sum of
robot times [3]. The performance and objective of sequen-
tial single-item auctions can be adjusted through selection
of bidding algorithms and auction resolution algorithms.

4.1. Bidding Algorithms330

Robots must independently calculate bids for each task
in each auction round. The bidding algorithm determines
what tasks they bid on, and how much they bid for them
[3]. In each round, there is a set of unallocated tasks, and
robots have initially empty paths.335

The robots calculate the cost of including a task in their
path, and bid accordingly. In order to calculate the new
path costs, robots must independently solve a TSP each
auction round. We use the insertion heuristic [3] because

it does not require re-building paths each auction round,340

hence being very quick, while still providing good solutions
relative to other heuristics.

4.2. Auction Resolution

The robot that prompts an auction becomes the auc-
tioneer, and must be capable of determining which tasks345

to allocate to which robots based on their bids. For multi-
robot routing, it is common for this to be the Lowest Bid
(LB) [3]. The auctioneer takes the overall lowest bid and
assigns that task to its bidder. As a consequence of this,
robots only need to communicate their lowest bid to the350

auctioneer.

4.3. Tool Swap

The proposed bidding format involves bidding on tool-
task pairs as well as individual tasks. This would change
the sequential single-item auction into a combinatorial auc-355

tion, where combinations or ’bundles’ or tasks are bid on.
Combinatorial auctions can produce better solutions, but
each additional combination increases the processing time.
Combinatorial auctions can scale factorially if they use ev-
ery combination of tasks, making it unusable with even a360

moderate number of tasks.
We add the option for robots to bid on tool-task pairs.

Rather than bidding on every possible tool-task pair, which
would increase the number of calculations fromNumTasks
to NumTasks ∗ (NumTools+ 1), we only need to consid-365

er swapping to the best tool for the job. This reduces the
number of calculations to NumTasks∗2. In essence, each
robot bids on each unallocated task twice: once if it were
to keep the tool it has; and once if it were to swap and use
the tool most suited for that task. The number of auction370

rounds remains the same, as one task will be allocated
each auction round.

5

76

Table 1: The tuned genetic algorithm properties.

Population 100
Replacement 20%

Crossover Rate 95%
Mutate-External 2/12
Mutate-Reverse 4/12

Mutate-ToolChange 3/12
Mutate-ToolMatch 3/12

Table 2: The tuned genetic algorithm properties with seeding.

Population 100
Replacement 20%

Crossover Rate 80%
Mutate-External 1/4
Mutate-Reverse 1/4

Mutate-ToolChange 1/4
Mutate-ToolMatch 1/4

While combinatorial auctions can vastly increase the
time taken to find a solution due to the large increase in
options to calculate [6], our procedure only doubles the375

number of bids.

5. Genetic Algorithm

Genetic algorithms search for good solutions by ran-
domly generating, breeding, and evolving solutions. So-
lutions are encoded as genomes. The population is first380

randomly generated, and the fitness of the solutions are
ranked. Parents are then selected from the population us-
ing weighted random selection, and combined to produce
children. The children are formed from their parents us-
ing crossover and mutation functions. The children are385

then added to the population (steady-state GA) or used
to form the next generation (standard GA). We make use
of steady-state GA. In a steady-state GA, the population
is cut back through weighted random selection. The ba-
sic concept is that genes which are fitter will survive and390

breed, while those that are less fit will be removed. After a
certain number of generations the best solution is selected.
The parameters are listed in Table 1.

5.1. Representation

Solutions to the problem must be represented as a395

genome. For the TSP, the genome indicates the order that
tasks should be completed. For multi-robot routing, the
genome is extended to specify the number of tasks allo-
cated to each robot [12]. This is shown in Figure 4. For
multi-robot routing with tools, we propose a further addi-400

tion that represents the tool to be used for each task. This
is encoded as a longer vector, but may be represented as a
second row to visually identify the tool used for each task.
This is shown in Figure 5.

Figure 4: The genetic algorithm representation for the Multiple Trav-
elling Salesman Problem. Robot 1 will complete tasks 9, 7, 5, 6, 2.
Robot 2 will complete tasks 8, 4. Robot 3 will complete tasks 3, 1.

Figure 5: The genetic algorithm representation for the Multiple Trav-
elling Salesman Problem with tools. Robot 1 will complete task 2
with tool 1, task 6 with tool 2, task 5 with tool 1. Robot 2 will com-
plete task 7 with tool 1, task 3 with tool 3. Robot 3 will complete
task 4 with tool 1, task 1 with tool 2.

5.2. Population405

The population is created by randomizing the tasks and
robot sections. The tools are randomised using weighted
random sampling. Tools that are better at being used
to complete a given task are more likely to be selected.
This means that incompatible tools will never be selected,410

and the use of inefficient tools can be explored but are
unlikely to dominate the search. We make use of steady-
state GA, where new solutions replace the worst solutions
in the population pool. With a population size of 100 and
replacement rate of 20%, each generation will replace the415

worst 20 solutions with new candidates. Convergence time
can be improved by seeding the GA with solutions found
from heuristics. Instead of randomly generating solutions,
a solution method such as a sequential auction is used.
This can improve results, but may also lead to premature420

convergence [12]. The tuned values for the seeded genetic
algorithm are listed in Table 2.

5.3. Population Selection

Each generation, a number of candidates are selected
from the population. These candidates are used to create425

children for the next generation. Commonly used selection
techniques include tournament selection, where the popu-
lation is randomly grouped and the best in each group is
selected; roulette wheel selection, where the likelihood of
being selected scales with solution quality; and rank-based430

6

77

Figure 6: An overview of the Two-part Chromosome Crossover
(TCX) [12] with tool usage. Two parents (Mum and Dad) are s-
elected for crossover. A subsection of each robot path is selected
from Mum, marked by yellow shading. In this case tasks 6 and 5
for robot 1, task 3 for robot 2, and task 1 for robot 3. Their cor-
responding tools are also selected. The remaining tasks (2, 7, 4)
are rearranged to match the order in Dad (7, 2, 4), and the tools
are replaced. These are randomly distributed between the robots, in
this case one task is given to robot 1, two tasks are given to robot 2,
and no tasks are given to robot 3. The tasks selected in step 2 are
combined with the distributed tasks to form a child gene.

roulette wheel selection, where the likelihood of being s-
elected scales with the rank of solution quality [42]. We
make use of rank-based roulette wheel selection.

5.4. Crossover

When two parents have been selected from the pop-435

ulation, there is a chance they are used to create chil-
dren. This process is done with a crossover operator. The
crossover operator has the purpose of maintaining good
sub-tours while generating new solutions. It is also im-
portant that children represent valid solutions, otherwise440

time is wasted exploring invalid solutions. There are many
crossover operators that have been designed. We make
use of the two-part chromosome crossover (TCX) designed
for the mTSP [12]. With the introduction of tools, the
crossover function also has the purpose of maintaining445

good task-tool pairings. To adopt TCX to include tool-
s, tasks and tools are paired together. Any movement of
tasks in the TCX process will also apply to the tool for
that task. This ensures the crossover will not pair a task
with a tool that cannot be used to complete it. The TCX450

operator with tools is shown in Figure 6.

5.5. Mutation

Mutations occur to periodically introduce new solution
types into the population. We apply mutation whenever a
solution is selected and not used for crossover. Any time455

a task is moved, the tool being used goes with it. We use
four mutation types:

1. External Swap: Two tasks belonging to two robots
are randomly selected and swapped.

2. Reverse: A subpath belonging to one robot is ran-460

domly selected, and the subpath is reversed. This
process is used in 2-opt improvement [43].

3. Tool Change: A random task is selected and its cor-
responding tool is changed to another valid tool.

4. Tool Match: A subpath belonging to one robot is465

randomly selected. All tasks in the subpath will
change tools (if valid) to match that of a random
task in the subpath.

External Swap and Reverse are standard mutations for
multi-robot routing. Tool Change and Tool Match are in-470

troduced in this paper. The purpose of Tool Change is to
explore new task-tool pairings while ensuring the combi-
nation is valid. The purpose of Tool Match is to explore
solutions where several tasks can be completed without
changing tools. The odds for each mutation are listed in475

Table 1 and 2.

6. Worst Case Analysis

We ensure the guaranteed performance of the trans-
formation and sequential auction by analysing worst-case
scenarios for time and solution quality.480

6.1. Time

For the transformation outlined in Section 3, we have
N robots and M tasks forming V vertices, resulting in
V (V−1)

2 edges. For each edge, we compare the extra dis-
tance from using one of the TR tool racks. Therefore, we485

have a time of O(TR ∗V 2) to perform the transformation.
For a standard sequential single-item auction, the time

is as follows: Each auction round O(M): each unallocated
task O(M): is temporarily inserted at each path O(M):
and the path cost calculated O(M). This gives a total490

order of O(M4).
For sequential auctions with combinatorial tool swaps

outlined in Section 4, this becomes: Each auction round
O(M): each unallocated task O(M): is temporarily in-
serted at each path O(M) and tool-swap cost is calculated495

for each tool rack O(TR): and the path cost calculated
O(M) This gives a total order of O(M4 + TR ∗M3).

The time to calculate the transformation is O(TR ∗
V 2), and the extra time by using sequential auctions with
combinatorial tool swaps is O(TR ∗M3). V > M , so it is500

possible for V 2 > M3, but for problems where there are
more tasks than robots, it is expected that M is close to
V , so that applying the transformation and solving with a
standard sequential auction will be faster in most applied
cases.505

Genetic algorithms have customisable convergence times
and do not have a worst-case time.

7

78

Table 3: The expertise table for a set of tools and task types.

Type 1 Type 2 Type 3 . . . Type M

Tool 1 E1 E2 E3 . . . EM

Tool 2 1 0 0 0
Tool 3 0 1 0 0
Tool 4 0 0 1 0
.

Tool M 0 0 0 1

Table 4: The possible costs to complete a task. The costs involve the
cost to travel to the task (tc), the cost to complete the task once it
has been reached (bc) which is amplified by tool expertise (Ei), and
the extra cost to switch tools (sc). The tool expertise will depend
on whether a general purpose tool is used, or whether to swap to use
the best tool.

Edge
(1) Using (2) Using

(2) - (1)
general tool best tool

Ti → Ti tc+ bc
Ei

tc+ bc bc− bc
Ei

Ti → Tj tc+ bc
Ej

tc+ sc+ bc bc− bc
Ej

+ sc

start → Ti tc+ sc+ bc
Ei

tc+ sc+ bc bc− bc
Ei

Ti →end tc+ sc tc+ sc 0

6.2. Solution Quality

We analyse the possible loss of optimal results through
the transformation process. The transformation constraint510

is that each task must be completed using the tool that is
best suited for it. We consider the existence of tools that
can be used to complete more than one task type, and
provide an upper bound on the expertise of these tools
that maintain the optimal solution for both MiniSum and515

MiniMax.
Consider a set of M tasks of type T . For each robot

there is an optimal path for minimising the MiniSum or
MiniMax objective. If each path is maintained in the
transformation process, we have not lost solution optimal-520

ity. If a path violates the transformation constraints, then
we may have lost solution optimality.

Without loss of generality, we represent the tool exper-
tise in Table 3. There is a general-purpose tool which will
never be included in the transformation, as there is no task525

which it is best for. If we can ignore this tool without in-
creasing path cost, the optimal solution is guaranteed to be
included in the transformation. Alternatively, if the path
cost must increase if this tool is ignored, then the optimal
solution may be discarded during the transformation.530

The costs for using or ignoring the general purpose tool
are listed in Table 4. The travel cost (tc) is the movement
cost from one task to another. The base cost (bc) is the
cost to complete the task once arrived. This is amplified
by the expertise value (E) of the tool, which is 1 for the535

best tool for that task. The swap cost (sc) is the extra
cost required to move to a tool rack, equip a new tool,
then move to the task.

The path cost will increase if the third column of Table
4 is greater than 0. We know that E ≤ 1, so bc− bc

E ≤ 0.540

The only way for the path cost to increase is by Ti → Tj
transitions, i.e., the general purpose tool is most useful
when the robot would need to change tools often.

The worst case scenario is therefore an optimal path in
the form:

start→ Ti → Tj → Ti → Tj → Ti → · · · → Ti → end (8)

If we use constant task costs and swap costs for each seg-
ment (i.e., let tc be the biggest task cost, and let sc be the
biggest swap cost) this is equal to:

start→ Ti + n(Ti → Tj) + n(Tj → Ti) + Ti → end (9)

where n is half the number of tasks. The cost increase
from executing this path without the general purpose tool
can be calculated from the last column of Table 4. Opti-
mality is maintained if the cost does not increase, therefore
optimality is maintained if:

0 ≥ bc− bc

Ei
+ n(bc− bc

Ej
+ sc) + n(bc− bc

Ei
+ sc) + 0

(10)

We replace individual expertise values with Emax2, which
represents the second-highest expertise value for a given
task type. Emax = max({E1, E2, E3 . . . EM}), Emax2 =
max({E1, E2, E3 . . . EM} − {Emax}).

0 ≥ bc− bc

Emax2
+ 2n(bc− bc

Emax2
+ sc) (11)

Emax2 ≤
bc

2n
2n+1 ∗ sc+ bc

(12)

A close upper bound on this is:

Emax2 ≤
bc

2 ∗ sc+ bc
(13)

For example, say the tasks have cost 60 and the biggest
swap cost is 45.

Emax2 ≤
60

2 ∗ 45 + 60
(14)

Emax2 ≤ 0.4 (15)

As long as a tool does not have a second-highest expertise
of 0.4, then the optimal solution is guaranteed to remain545

in the transformed problem. If the second best expertise
is greater than 0.4, the optimal solution may or may not
be conserved when transforming the problem. This upper
limit is simple to calculate, as the biggest base cost and
the biggest swap cost are both found when performing the550

transformation.

7. Experiments

Experiments were conducted to compare the perfor-
mance of the adapted sequential auctions and genetic al-
gorithms with and without the problem transformation.555

8

79

We altered the following independent variables: num-
ber of tasks, number of robots, number of tool racks, the
objective (minisum/minimax), and the solution algorithm
(auction, GA and multiple integer linear program with and
without transformation). We then measured the path cost560

and processing time. Other variables such as robot speed,
the number of tools, and area size were held constant to
keep the number of tests feasible.

Tasks, robots, and tool racks were created randomly
in a 100x100m area. Robots are assumed to travel at 1565

m/s, and each task takes 10 seconds to complete with the
best tool. Non-best tools can be used to complete tasks,
and will take 10/E seconds to complete, where 0 ≤ E ≤ 1
is the expertise. There is an equal amount of each task
type. Each tool has an expertise of 1 for one task type,570

and random expertise for all other task types, up to a cap.
When the cap is 0, we describe this as a system with task-
tool pairs, i.e., each task can only be completed by one
tool. Each test was performed 200 times and the average
recorded.575

The experiments were performed using MATLAB for
its deterministic results. The processing was performed
using the Phoenix high-performance computation cluster
at The University of Adelaide. Tests were done in par-
allel, where each test was given a single-core with 2 GB580

of memory. This had very similar processing speed to a
64-bit laptop with i5-3320M CPU @ 2.60GHz.

8. Computational Results

The code and data for these results are available online,
hosted by The University of Adelaide (http://dx.doi.585

org/10.4225/55/5b1631ce8b456).

8.1. Task-Tool Pairs

The first experiments considered task-tool pairs, where
each task can only be completed by one tool. In Tables
5 and 6, we see the results for the MiniSum and Mini-590

Max objectives, respectively. For MiniSum, three tech-
niques are compared: an integer linear program that guar-
antees optimal results [30]; a sequential auction outlined
in Section 4; and a genetic algorithm outlined in Section
5. The algorithms are tested on the multi-robot routing595

problem (without tools) resulting from the transformation
described in Section 3 (TF), as well as the direct tool-based
multi-robot routing problem without transformation (no-
TF). Note that the transformation is guaranteed to main-
tain the optimal solution for task-tool pairs, as all other600

tool expertise is 0. Hence, the optimal solutions found for
the transformed problem are guaranteed to be optimal for
the untransformed problem For the MiniMax objective, no
optimal solutions were used, as optimality for the MiniMax
objective is an open problem.605

For both MiniSum and MiniMax, we can see that auc-
tioning produces similar results with and without the trans-
formation. As the number of tool racks increases, the

Table 5: MiniSum Performance with task-tool pairs

TR T R
Opt Auction GA GA(Seeded)

tf tf no-tf tf no-tf tf no-tf

1

50
3 2123 2201 2201 2427 2434 2138 2141
5 2107 2191 2190 2670 2662 2121 2124
10 2095 2177 2177 2775 2780 2116 2117

100
3 3084 3305 3305 3460 3489 3164 3182
5 3072 3298 3296 4035 4006 3155 3171
10 3057 3272 3272 4513 4563 3145 3152

150
3 3933 4247 4247 4437 4518 4079 4100
5 3927 4243 4243 5197 5216 4081 4095
10 3912 4223 4223 6025 6169 4090 4087

4

50
3 1926 2073 2093 2164 2167 1959 1959
5 1911 2073 2091 2337 2333 1964 1962
10 1910 2076 2092 2453 2455 1982 1988

100
3 2933 3233 3229 3317 3347 3050 3059
5 2930 3227 3224 3669 3660 3063 3066
10 2926 3226 3223 4002 4055 3073 3065

150
3 3812 4203 4209 4371 4418 3996 4021
5 3798 4184 4185 4798 4860 3995 4009
10 3792 4184 4190 5402 5443 4039 4019

8

50
3 1832 1975 2046 2033 2046 1881 1896
5 1825 1962 2049 2186 2183 1876 1897
10 1823 1976 2047 2281 2313 1901 1930

100
3 2881 3163 3202 3231 3270 2997 3007
5 2865 3149 3201 3514 3526 2990 2998
10 2865 3157 3199 3808 3830 3018 3019

150
3 3760 4153 4185 4293 4336 3950 3965
5 3751 4133 4173 4639 4673 3947 3959
10 3750 4138 4158 5143 5178 3994 3968

transformed solutions slowly become better than the un-
transformed solutions (< 0.03% for 1 and 4 tool racks,610

1.6% for 8 tool racks). For the MiniSum objective, the
auction solutions are worse than optimal for 1, 4, and 8
tool racks by 7%, 10%, and 10% respectively.

The genetic algorithm produces allocations with a qual-
ity that is largely dependent on the number of tasks and615

robots. As the complexity of the problem increases, so
too does the number of solutions, making it harder for the
GA to find good solutions. Because of this, GA performs
drastically worse as the problem complexity increases. It
is outperformed by the auction process even for relatively620

small problems, although it would be expected to outper-
form auction for very small problem sizes (10 tasks). How-
ever, the GA is superior if initially seeded with solutions
from the auction process.

In the MiniSum objective, the seeded GA solutions are625

worse than optimal for 1, 4, and 8 tool racks by 3%, 5%,
and 5% respectively. The use of the transformation makes
little difference to the GA, with and without seeding.

The processing time of each algorithm is also an im-
portant factor. Looking at Table 7, we firstly see expected630

timing trends: auctions are very quick; branch-and-cut is

9

80

Table 6: MiniMax Performance with task-tool pairs

TR T R
Auction GA GA(Seeded)

tf no-tf tf no-tf tf no-tf

1

50
3 938 938 1039 1058 902 902
5 667 668 754 779 637 639
10 478 478 534 549 456 457

100
3 1316 1316 1521 1550 1268 1271
5 884 884 1107 1129 853 856
10 599 599 766 766 575 575

150
3 1634 1634 1893 1915 1586 1589
5 1066 1066 1392 1422 1035 1036
10 704 704 968 991 677 678

4

50
3 817 827 839 858 781 786
5 563 565 593 599 531 540
10 377 379 414 421 351 355

100
3 1201 1214 1306 1335 1165 1173
5 790 797 903 925 763 770
10 493 495 617 627 474 475

150
3 1528 1540 1707 1740 1484 1488
5 995 995 1178 1215 964 965
10 593 596 798 809 573 578

8

50
3 757 782 777 792 728 734
5 513 529 539 551 489 496
10 333 336 378 381 310 312

100
3 1162 1179 1235 1263 1122 1129
5 751 761 833 852 731 734
10 453 458 565 573 435 436

150
3 1485 1508 1632 1666 1442 1453
5 951 967 1103 1124 924 932
10 554 557 741 751 537 540

T
a
b

le
7
:

M
in

iS
u

m
T

im
e

w
ith

ta
sk

-to
o
l

p
a
irs

(seco
n

d
s)

T
a
sk
s

R
o
b
o
ts

O
p
tim

a
l(tf)

A
u
ctio

n
(tf)

A
u
ctio

n
G
A
(tf)

G
A

G
A
(seed

ed
,tf)

G
A
(seed

ed
)

m
ea
n

std
m
ea
n

std
m
ea
n

std
m
ea
n

std
m
ea
n

std
m
ea
n

std
m
ea
n

std

5
0

3
1
.5

1
.1

1
.8

0
.2

2
.7

0
.3

6
0
2
.7

4
8
.0

5
9
4
.9

3
0
.4

2
5
8
.1

1
7
.8

2
6
3
.0

1
7
.8

5
3
.5

1
.5

1
.8

0
.2

2
.7

0
.3

7
1
6
.6

4
3
.4

6
7
8
.1

3
7
.0

2
5
9
.1

1
9
.5

2
7
8
.6

1
6
.2

1
0

1
7
.9

8
.3

1
.8

0
.2

2
.8

0
.3

8
0
2
.1

6
7
.6

7
9
0
.0

5
6
.5

2
8
7
.7

1
8
.1

3
0
7
.2

2
3
.5

1
0
0

3
1
2
.0

9
.4

7
.4

1
.3

1
3
.0

1
.9

3
3
0
6
.9

2
8
9
.4

3
2
5
1
.6

1
8
5
.3

1
6
1
3
.1

9
7
.5

1
5
9
1
.9

7
5
.3

5
3
1
.7

2
1
.7

7
.6

1
.3

1
2
.7

2
.0

3
8
4
6
.4

2
5
9
.8

3
6
3
5
.0

1
7
5
.5

1
6
3
0
.7

9
3
.5

1
7
2
3
.1

8
7
.2

1
0

1
8
1
.9

7
6
.8

7
.7

1
.3

1
2
.4

2
.4

4
5
9
2
.0

3
1
7
.0

4
4
2
7
.0

2
4
2
.5

1
8
2
0
.7

1
1
6
.6

1
9
2
5
.4

1
0
1
.5

1
5
0

3
5
6
.9

5
9
.2

2
8
.8

4
.9

4
3
.2

5
.9

6
9
7
0
.8

3
6
5
.3

6
8
9
7
.9

3
9
8
.9

2
8
5
7
.9

1
4
7
.5

2
9
3
9
.5

1
3
4
.4

5
1
4
7
.7

1
3
8
.2

2
9
.2

4
.5

4
3
.3

6
.4

8
0
9
9
.3

4
8
6
.6

7
5
6
3
.6

5
6
2
.1

2
8
9
1
.0

1
6
0
.9

3
1
4
2
.2

1
8
7
.2

1
0

7
0
9
.2

3
4
4
.8

2
9
.4

4
.7

4
3
.2

7
.6

9
7
2
8
.2

7
5
4
.6

9
2
1
0
.0

8
2
9
.3

3
2
6
3
.6

2
1
1
.5

3
3
0
4
.1

1
4
9
.9

10

81

T
a
b

le
8
:

M
in

iM
a
x

T
im

e
w

it
h

ta
sk

-t
o
o
l

p
a
ir

s
(s

ec
o
n

d
s)

T
a
sk
s

R
o
b
o
ts

A
u
ct
io
n
(t
f)

A
u
ct
io
n

G
A
(t
f)

G
A

G
A
(s
ee
d
ed

,t
f)

G
A
(s
ee
d
ed

)

m
ea
n

st
d

m
ea
n

st
d

m
ea
n

st
d

m
ea
n

st
d

m
ea
n

st
d

m
ea
n

st
d

5
0

3
1
.3

0
.1

2
.3

0
.2

6
0
7
.5

3
4
.3

6
0
8
.9

4
6
.4

2
8
1
.9

1
7
.1

2
8
6
.5

1
8
.4

5
1
.4

0
.1

2
.5

0
.2

6
8
9
.1

4
2
.0

6
4
8
.4

5
7
.2

3
0
8
.6

1
7
.8

3
1
6
.8

1
7
.8

1
0

1
.8

0
.2

3
.0

0
.2

8
5
9
.3

7
0
.2

8
8
3
.4

5
3
.6

3
9
2
.2

2
6
.6

3
8
7
.7

1
7
.9

1
0
0

3
3
.0

0
.2

7
.1

0
.8

3
2
2
5
.7

2
2
4
.5

3
2
8
2
.2

1
9
3
.5

1
7
7
9
.1

1
0
4
.8

1
8
4
6
.5

8
0
.6

5
3
.6

0
.2

7
.2

0
.6

3
7
5
1
.4

2
4
5
.0

3
7
4
9
.5

2
0
7
.0

2
0
2
6
.3

1
3
2
.4

2
0
2
7
.1

9
9
.2

1
0

4
.2

0
.2

8
.8

0
.6

4
6
1
1
.2

2
9
1
.0

4
5
1
9
.5

2
3
2
.5

2
4
2
6
.7

1
5
2
.2

2
4
6
7
.5

1
5
5
.9

1
5
0

3
7
.6

0
.5

1
8
.8

2
.1

6
6
6
3
.1

4
2
2
.7

6
9
9
7
.6

6
8
4
.8

3
2
2
4
.9

1
6
9
.6

3
3
2
5
.1

1
4
2
.6

5
7
.4

0
.6

1
8
.1

1
.9

7
5
1
0
.6

5
1
0
.1

7
6
0
8
.7

4
0
7
.2

3
7
1
3
.7

1
9
8
.8

3
6
3
9
.0

1
3
5
.3

1
0

8
.9

0
.7

2
0
.8

1
.6

9
2
3
9
.7

6
2
4
.8

9
1
5
7
.4

4
6
3
.9

4
3
0
7
.9

2
6
0
.9

4
4
5
2
.9

1
6
7
.0 very quick for small cases but has trouble at scale; and

genetic algorithms have a customisable convergence time.
In this case, a long convergence time was required to find
good results. Of particular importance is the time differ-635

ences between the transformed and non-transformed cases.
For the auction, transforming the problem reduces compu-
tation time quite significantly. This is particularly relevant
for the MiniMax case in Table 8, where the time required
in the transformed case is less than half of the untrans-640

formed case. Seeding the GA also improves convergence
time significantly.

Note that processing was done on a single processor. If
multiple processors were used the auction process would be
faster due to parallelised bid calculations; and the genetic645

algorithm performance would be greater due to multiple
attempts.

8.2. Overlapping Tool Expertise

If more than one tool can be used to complete a given
task, the robots have to choose between using the tool that650

is currently equipped, and moving to a tool rack to select
another tool.

In these experiments, each tool has one task type for
which it has perfect expertise, but all other expertise val-
ues are randomly generated between 0 and an expertise655

cap. An expertise cap of 0 produces task-tool pairings,
which produces the same results as in Tables 5 and 6.

Figures 7 and 8 show algorithm performances when
using tools with overlapping expertise. The marked points
represent solutions without using a transformation, with a660

cubic interpolation drawn between them. The horizontal
line is the solution cost for the transformed problem. As
discussed in Section 3, the transformation process ignores
all of the other expertise values because it enforces the use
of the highest expertise tool for each task.665

The bounds (overlap of 0 and overlap of 1) for auction
and GA are as one would expect, having tools which can
be used for multiple tasks means fewer tool swaps are nec-
essary. This means that the overall cost should go down.
However, this is not a linear trend. Instead, the costs in-670

crease for a while as the cap increases, before it decreases.
The reason for this is that low expertise overlap introduces
valid (but unlikely to be good) solutions, which makes find-
ing good solutions more difficult. This implies that it may
be worthwhile to ban certain tool usage in order to re-675

duce the search space. The proposed transformation does
this intrinsically, which explains its high performance even
for rather large tool expertise overlap. This could also be
done using a manual or calculated threshold, for example,
we could ban any tool-task expertise below 0.4. The per-680

formance by using this threshold would largely depend on
the system.

This local maxima shifts to the right as more tool racks
are used, but is unaffected by the number of tasks and
robots.685

11

82

Auc
Auc(tf)
GA
GA(tf)
GA(seeded)
GA(seeded,tf)

Figure 7: The performance of a sequential auction and genetic algorithm with overlapping tool capabilities for the MiniSum objective.

12

83

Auc
Auc(tf)
GA
GA(tf)
GA(seeded)
GA(seeded,tf)

Figure 8: The performance of a sequential auction and genetic algorithm with overlapping tool capabilities for the MiniMax objective.

13

84

9. Benchmark Tests

We also test the performance of each algorithm in a
number of benchmark problems from the TSPLIB library
[44]. While this library does not have tool-swapping multi-
robot routing problems, the TSP problems are a widely690

used benchmark for TSP problems, and have been adapt-
ed for use in multi-robot routing algorithms [19]. One
adaptation is to set all robots to start at the first node.
While this works for the MiniMax objective, the MiniSum
objective is equivalent to a TSP. This can be avoided by695

adding additional constraints, such as minimum task com-
pletion requirements for each robot. This is not sufficient
for our purposes, where a number of tool racks must also
be used. Other conversions have used random placement
of robots, resulting in a problem that cannot easily be re-700

produced. We believe this defeats the purpose of using a
standard library. We use a process that converts the TSP
to multi-robot routing in a reproducible, non-random way
which does not clump the robots and tool racks on the
same point.705

Every N th node (starting from node 1) represents a
robot start location. Every M th node (starting from node
2) represents a tool rack location. The tasks types are dis-
tributed evenly. If a node is marked as both a robot start
location and a tool rack, it is a robot start location. N and710

M are selected first to ensure there are enough nodes for
the desired number of robots and tool racks. For example,
in Table 9 we wish to test up to 3 robots and up to 2 tool
racks, so we can select N = 5 and M = 10. If we wish to
compare the 3 robot case with the 10 robot case, we do715

not change N , as this would change the number of tasks.
Instead, we use some of the robot locations and ignore the
unused ones. An equation to spread the robots out is list-
ed in Equation (16). This same equation is also used for
tool racks. We use a rounding function that rounds to odd720

for values with a decimal value of 0.5.

r = round(
maxrobots+ 1

numrobots+ 1
∗ k), k ∈ {1, 2, . . . , numrobots}

(16)

Tables 10 and 11 show the performance of algorithms
for standard TSPLIB problems, Pr76, Pr152, and Pr226.
An example problem and solution from the TSPLIB li-725

brary is shown in Figure 9. The conversion from TSP to
multi-robot routing with tools is listed in Section 7. We
present our solutions for three problems with a differing
number of tools, robots, and racks.

Each tool has an expertise of 1 for the diagonal in the730

expertise table, and all other values are 0.2. Each task has
a cost of 600, and each tool swap has a cost of 1200. This
results in E values of 0.013, 0.017, and 0.016 for Pr76,
Pr152, and Pr226 respectively. These values were selected
such that the sequential auction and GA adaptations are735

unlikely to perform well due to slight tool overlap, as dis-
cussed earlier, and that optimality is not guaranteed to be

Figure 9: A multi-robot routing with tools problem from the pub-
licly available TSPLIB. The five robots (circles) form path plans to
complete tasks (+, *, �). They must make use of tools located at
tool racks (squares), and return the tools before returning to their
start location. The bottom graph shows an example solution for the
MiniMax objective.

14

85

Table 9: TSPLIB to multi-robot routing for 13 points and 3 task
types. We wish to compare up to 3 robots and up to 2 tool racks, so
we select for a robot every N nodes and a tool rack every M nodes.
This is an example of N = 5, M = 10. The effect of number of robots
(R) and tool racks (TR) can then be compared without changing the
location or amount of tasks.

Node (3R,2TR) (2R,2TR) (1R,1TR)

1 Robot Robot -
2 Tool Rack Tool Rack Tool Rack
3 Task 1 Task 1 Task 1
4 Task 2 Task 2 Task 2
5 Task 3 Task 3 Task 3
6 Robot - Robot
7 Task 1 Task 1 Task 1
8 Task 2 Task 2 Task 2
9 Task 3 Task 3 Task 3
10 Task 1 Task 1 Task 1
11 Robot Robot -
12 Tool Rack Tool Rack -
13 Task 2 Task 2 Task 2

maintained when transforming. Effectively this is a prob-
lem that all known algorithms are weak at. This is a key
area where future algorithms can make improvements.740

From Tables 10 and 11 we can see that the use of the
transformation improves the results. For the sequential
auction, this is especially true with low numbers of robots
for both MiniSum and MiniMax objectives.

10. Conclusion745

We have provided three algorithms to solve the multi-
robot routing optimisation problem with adaptive hetero-
geneity. Firstly, a transformation that converts the prob-
lem into a standard multi-robot routing problem was intro-
duced, with a proven upper bound on its ability to main-750

tain optimal solutions. Secondly, adaptations to the se-
quential single-item auction bidding and resolution phas-
es were made to find fast solutions. Thirdly, adaptations
were made to genetic algorithm representation, along with
crossover and mutation functions. The quality and speed755

of these solutions were compared and empirically tested
to illustrate their performance for a range of heterogeneity
overlaps.

In particular, directly solving the problem with auc-
tions and genetic algorithms provides good results when760

heterogeneity overlap is high, but produce poor results
at low heterogeneity overlap due to the introduction of
many poor solutions. Transforming the problem avoids
this gap in performance, and allows other techniques to
be used, such as mixed-integer linear programs. Further-765

more, transforming the problem also prevents exploitation
of tools with high heterogeneity overlap.

Finally, the algorithms are benchmarked on repeatable
TSPLib problems such that any algorithms made in the
future can be quantitatively compared.770

Acknowledgment

This research was supported by the Phoenix High Per-
formance Computing (HPC) service at the University of
Adelaide, an Australian Government Research Training
Program (RTP) Scholarship, and by the Commonwealth775

of Australia (represented by the Defence Science and Tech-
nology Group) through a Defence Science Partnerships a-
greement.

References

[1] J. R. Montoya-Torres, J. L. Franco, S. N. Isaza, H. F. Jimnez,780

N. Herazo-Padilla, A literature review on the vehicle routing
problem with multiple depots, Computers & Industrial Engi-
neering 79 (2015) 115–129.

[2] R. Kulkarni, P. R. Bhave, Integer programming formulations
of vehicle routing problems, European Journal of Operational785

Research 20 (1) (1985) 58–67.
[3] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak,

A. J. Kleywegt, S. Koenig, C. A. Tovey, A. Meyerson, S. Jain,
Auction-based multi-robot routing, in: Robotics: Science and
Systems, Vol. 5, Rome, Italy, 2005, pp. 343–350.790

[4] S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, D. Kempe,
P. Keskinocak, A. Kleywegt, A. Meyerson, S. Jain, The power of
sequential single-item auctions for agent coordination, in: Pro-
ceedings of the National Conference on Artificial Intelligence,
Vol. 21, Menlo Park, CA; Cambridge, MA; London; AAAI795

Press; MIT Press; 1999, 2006, p. 1625.
[5] E. Schneider, E. I. Sklar, S. Parsons, A. T. Õzgelen, Auction-

based task allocation for multi-robot teams in dynamic environ-
ments, in: Conference Towards Autonomous Robotic Systems,
Springer, 2015, pp. 246–257.800

[6] D. C. Parkes, Iterative combinatorial auctions, MIT Press, 2006.
[7] M. B. Dias, Traderbots: A new paradigm for robust and efficient

multirobot coordination in dynamic environments, Phd thesis,
Robotics Institute, Carnegie Mellon University (2004).

[8] O. Olorunda, A. P. Engelbrecht, Measuring explo-805

ration/exploitation in particle swarms using swarm diversity,
in: Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress on,
IEEE, 2008, pp. 1128–1134.

[9] M. H. Qais, H. M. Hasanien, S. Alghuwainem, Augmented grey810

wolf optimizer for grid-connected pmsg-based wind energy con-
version systems, Applied Soft Computing.

[10] A. Saxena, B. P. Soni, R. Kumar, V. Gupta, Intelligent grey wolf
optimizerdevelopment and application for strategic bidding in
uniform price spot energy market, Applied Soft Computing 69815

(2018) 1–13.
[11] H. Liu, B. Xu, D. Lu, G. Zhang, A path planning approach for

crowd evacuation in buildings based on improved artificial bee
colony algorithm, Applied Soft Computing 68 (2018) 360–376.

[12] S. Yuan, B. Skinner, S. Huang, D. Liu, A new crossover ap-820

proach for solving the multiple travelling salesmen problem us-
ing genetic algorithms, European Journal of Operational Re-
search 228 (1) (2013) 72–82.

[13] H. Nazif, L. S. Lee, Optimised crossover genetic algorithm
for capacitated vehicle routing problem, Applied Mathematical825

Modelling 36 (5) (2012) 2110–2117.
[14] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, W. Rei,

A hybrid genetic algorithm for multidepot and periodic vehicle
routing problems, Operations Research 60 (3) (2012) 611–624.

[15] A. A. Hosseinabadi, M. Kardgar, M. Shojafar, S. Shamshir-830

band, A. Abraham, Gels-ga: hybrid metaheuristic algorithm
for solving multiple travelling salesman problem, in: Intelligent
Systems Design and Applications (ISDA), 2014 14th Interna-
tional Conference on, IEEE, 2014, pp. 76–81.

[16] M. M. Paydar, I. Mahdavi, I. Sharafuddin, M. Solimanpur, Ap-835

plying simulated annealing for designing cellular manufacturing

15

86

Table 10: MiniSum Performance with TSPLIB Problems. The problem is either transformed (tf), or solved directly (no-tf).

Problem Tools Robots Racks
Branch&Cut Auction GA(tf, seed) GA(no-tf, seed)

tf tf no-tf mean std best mean std best

Pr76

3

3
4 183597 235970 256961 232588 344 232009 244490 1718 242191
8 182222 241961 236310 229675 1823 224914 228225 943 227567

5
4 183597 242293 284096 231427 1380 228494 276506 216 276386
8 182222 236515 284096 229097 1318 226991 266189 4209 253506

10
4 183597 242293 284096 234088 1482 231630 276904 812 276386
8 182222 236515 284096 229267 1246 228464 269406 3945 259782

5

3
4 245851 315657 333252 293973 2225 290687 315286 4663 306380
8 243503 307923 339981 292675 2909 285557 310355 9145 294167

5
4 245851 307014 311534 295422 2407 290952 306285 322 306238
8 243503 305318 322855 295333 1808 290878 319620 1761 312746

10
4 245851 307014 311534 298596 1691 295209 306777 1020 306238
8 243503 305318 322855 298679 1635 294320 319745 2221 311348

8

3
4 297825 354012 374538 336568 2867 332178 357666 1981 352495
8 293368 342822 343274 319698 2043 316266 327955 2722 322332

5
4 297825 346509 366276 331357 2326 328508 356135 942 355047
8 293368 336597 357152 319586 2095 315404 350155 1217 341987

10
4 297825 346509 366276 336937 2874 330662 357230 1379 353779
8 293368 336597 357152 324853 2099 319831 350303 407 349687

Pr152

3

3
4 154796 271563 360249 260703 1459 255249 329976 11698 303745
8 154796 257784 340880 250131 4192 235981 292227 2361 285044

5
4 154796 263476 263476 262028 30 261960 262046 0 262046
8 154796 253475 263476 251295 207 250347 254438 257 254059

10
4 154796 263476 263476 262027 42 261825 262046 0 262046
8 154796 254167 256619 252021 131 251796 255189 0 255189

5

3
4 211525 356784 530940 336586 4065 328292 479261 8463 458537
8 208383 334406 438471 308204 6669 299150 358480 5025 343540

5
4 211525 362505 391686 355951 893 353758 389604 1737 386697
8 208383 331458 357725 320476 6018 304100 323005 5282 310966

10
4 211525 362505 391686 355761 934 353705 388806 1958 386697
8 208383 332147 341448 323711 4266 306059 338696 3324 324907

8

3
4 287005 486280 637924 430930 3885 421990 566985 5787 551607
8 281483 421524 526650 389713 2398 384727 423087 5297 408723

5
4 287005 486933 536268 445458 722 444047 533636 203 532485
8 281483 415861 481786 390312 2322 384991 430898 5204 418114

10
4 287005 486933 536268 446162 2115 442498 533643 166 532829
8 281483 413104 416544 387057 3812 381710 411293 1886 403106

Pr226

3

3
4 238217 346782 789559 341315 210 340606 688990 7528 673199
8 238217 339231 594548 325736 1239 323501 453524 9568 420727

5
4 238217 341238 341238 335953 297 335265 336108 97 335532
8 238217 333030 334423 325874 1663 322328 324201 532 323151

10
4 238217 341238 341238 336044 260 334857 336129 51 336065
8 238217 335620 339809 330051 1681 326857 328206 705 326961

5

3
4 306242 445949 823804 435187 3366 424637 745984 6479 728945
8 306242 433698 780193 411147 4094 405351 568848 13756 534466

5
4 306242 449627 476466 443496 309 442706 470617 91 470272
8 306242 432079 465542 416581 1524 413755 445275 1488 441467

10
4 306242 449627 476466 443448 308 442473 470617 77 470554
8 306242 430264 465181 419400 855 417399 448533 1118 446962

8

3
4 376894 596417 952583 556797 6957 539098 852215 7826 830097
8 376527 548764 912566 523128 3482 515520 687073 19431 643325

5
4 376894 589463 659079 570764 1304 567860 656670 250 656531
8 376527 552145 616739 534323 2809 530403 591721 2457 587771

10
4 376894 589463 659079 564062 4982 553372 656695 268 656531
8 376527 547894 613748 527262 2617 523382 595596 2634 591918

16

87

Table 11: MiniMax Performance with TSPLIB Problems. The problem is either transformed (tf), or solved directly (no-tf).

Problem Tools Robots Racks
Auction GA(tf, seed) GA(no-tf, seed)

tf no-tf mean std best mean std best

Pr76

3

3
4 100272 102964 90624 0 90624 98265 2117 93537
8 96945 94320 87695 0 87695 93423 708 92780

5
4 68931 64811 54353 0 54353 64095 130 63989
8 62709 68775 55035 214 54189 67171 0 67171

10
4 41789 46779 39618 17 39499 42290 1026 41075
8 42077 39160 34075 0 34075 39160 0 39160

5

3
4 121815 126887 113159 1050 110452 123114 1974 118795
8 114745 119691 107305 1000 106014 115876 1562 112454

5
4 75933 76978 70229 0 70229 75536 245 74521
8 72495 75488 67864 1644 66432 71416 1388 69644

10
4 53852 52931 44052 0 44052 50368 603 49279
8 46197 47452 41596 173 41024 45207 434 43786

8

3
4 128582 131371 123189 283 121894 130390 684 126172
8 123558 130318 118829 954 116767 123182 2181 119321

5
4 86458 85151 76174 692 75506 94522 174 84331
8 81913 82261 76699 177 75967 77673 1213 75080

10
4 56382 54584 51511 1915 48236 52238 946 50966
8 49913 50529 43653 806 43133 47386 1186 45353

Pr152

3

3
4 105813 139857 99583 0 99583 134586 937 131438
8 107359 107450 91339 555 90509 105451 601 104439

5
4 65383 65409 66627 0 66627 65400 0 65400
8 58916 63862 59021 0 59021 61875 0 61875

10
4 45962 44604 41052 41 41044 42902 350 42584
8 33532 33532 34914 21 34895 33522 0 33522

5

3
4 135490 180570 125811 1070 125174 168280 662 165733
8 134516 149327 115523 1659 113108 132421 2231 127216

5
4 87218 89080 79976 0 79976 88356 0 88356
8 74521 86552 72669 194 72622 82702 987 81819

10
4 52850 54731 50593 7 50592 54442 0 54442
8 44115 44604 44858 0 44858 41633 296 41553

8

3
4 170773 213305 158923 798 158173 206106 24 206102
8 151612 160248 142201 1430 139439 158259 297 158014

5
4 105245 119531 98807 1142 96631 119341 306 118683
8 94514 102599 89296 425 88233 93477 1332 89250

10
4 64488 65037 60112 824 58361 65037 0 65037
8 52144 54105 48826 211 48325 52412 372 51899

Pr226

3

3
4 129631 148539 121330 42 121274 140975 342 140473
8 126342 193205 117089 304 116444 168768 2573 160507

5
4 75313 80098 74459 129 74285 79674 0 79674
8 73009 76020 72888 32 72792 75765 51 75716

10
4 44412 43829 46962 0 46962 43405 0 43405
8 41208 43297 44538 447 43532 41948 411 41509

5

3
4 166496 228097 151255 130 151138 217498 520 215402
8 155872 242431 146779 1691 144954 210036 2445 202077

5
4 99672 105535 97544 0 97544 102357 0 102357
8 94780 106047 92554 78 92123 103334 0 103334

10
4 61446 61728 54066 0 54066 60055 626 59560
8 52988 58537 55945 266 54823 58333 0 58333

8

3
4 208471 310497 204522 761 202093 300525 1641 295246
8 197803 295217 187934 1448 182255 253015 4684 235516

5
4 130200 142424 126754 0 126754 141388 0 141388
8 120205 137853 113751 777 112932 137792 136 136842

10
4 73117 75551 69955 1191 67993 74772 284 74406
8 70821 73687 64373 0 64373 73161 287 72926

17

88

systems using MDmTSP, Computers & Industrial Engineering
59 (4) (2010) 929–936.

[17] J. Grobelny, R. Michalski, A novel version of simulated anneal-
ing based on linguistic patterns for solving facility layout prob-840

lems, Knowledge-Based Systems 124 (2017) 55–69.
[18] L. P. Behnck, D. Doering, C. E. Pereira, A. Rettberg, A mod-

ified simulated annealing algorithm for suavs path planning,
IFAC-PapersOnLine 48 (10) (2015) 63–68.

[19] Y. Chen, Z. Jia, X. Ai, D. Yang, J. Yu, A modified two-part845

wolf pack search algorithm for the multiple traveling salesmen
problem, Applied Soft Computing 61 (2017) 714–725.

[20] Y. Chen, D. Yang, J. Yu, Multi-UAV task assignment with pa-
rameter and time-sensitive uncertainty using modified two-part
wolf pack search algorithm, IEEE Transactions on Aerospace850

and Electronic Systems.
[21] R. Wu, S. Wang, Discrete wolf pack search algorithm based

transit network design, in: Software Engineering and Service
Science (ICSESS), 2016 7th IEEE International Conference on,
IEEE, 2016, pp. 509–512.855

[22] S. Ghafurian, N. Javadian, An ant colony algorithm for solving
fixed destination multi-depot multiple traveling salesmen prob-
lems, Applied Soft Computing 11 (1) (2011) 1256–1262.

[23] H. Zhang, X. Wang, P. Memarmoshrefi, D. Hogrefe, A survey
of ant colony optimization based routing protocols for mobile860

ad hoc networks, IEEE Access 5 (2017) 24139–24161.
[24] W. Wu, Y. Tian, T. Jin, A label based ant colony algorithm

for heterogeneous vehicle routing with mixed backhaul, Applied
Soft Computing 47 (2016) 224–234.

[25] X. Chen, P. Zhang, G. Du, F. Li, Ant colony optimization based865

memetic algorithm to solve bi-objective multiple traveling sales-
men problem for multi-robot systems, IEEE Access.

[26] E. Tuci, Evolutionary swarm robotics: genetic diversity, task-
allocation and task-switching, in: International Conference on
Swarm Intelligence, Springer, 2014, pp. 98–109.870

[27] A. Bernard, J.-B. Andr, N. Bredeche, Evolving specialisation
in a population of heterogeneous robots: the challenge of boot-
strapping and maintaining genotypic polymorphism, Artificial
Life 15 (2016) 1–8.

[28] J. Whitacre, A. Bender, Degeneracy: a design principle for875

achieving robustness and evolvability, Journal of Theoretical Bi-
ology 263 (1) (2010) 143–153.

[29] c. Koç, T. Bektaş, O. Jabali, G. Laporte, Thirty years of het-
erogeneous vehicle routing, European Journal of Operational
Research 249 (1) (2016) 1–21.880

[30] K. Sundar, S. Rathinam, Algorithms for heterogeneous, multi-
ple depot, multiple unmanned vehicle path planning problems,
Journal of Intelligent & Robotic Systems 88 (2017) 513–526.

[31] G. P. Das, T. M. McGinnity, S. A. Coleman, L. Behera, A
distributed task allocation algorithm for a multi-robot system885

in healthcare facilities, Journal of Intelligent & Robotic Systems
80 (1) (2015) 33–58.

[32] N. Sullivan, S. Grainger, B. Cazzolato, Sequential single-item
auction improvements for heterogeneous multi-robot routing,
Submitted to Journal of Intelligent & Robotic Systems.890

[33] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran,
M. Floyd, P. Abeles, D. Stephen, N. Mertins, A. Lesman, Team
IHMC’s lessons learned from the DARPA robotics challenge tri-
als, Journal of Field Robotics 32 (2) (2015) 192–208.

[34] R. A. Knepper, T. Layton, J. Romanishin, D. Rus, Ikeabot:895

An autonomous multi-robot coordinated furniture assembly sys-
tem, in: Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on, IEEE, 2013, pp. 855–862.

[35] S. Jeon, M. Jang, D. Lee, Y.-J. Cho, J. Kim, J. Lee, Multiple
Robots Task Allocation for Cleaning and Delivery, Springer,900

2016, book section 1, pp. 195–214.
[36] M. Bollini, S. Tellex, T. Thompson, N. Roy, D. Rus, Interpreting

and executing recipes with a cooking robot, in: Experimental
Robotics, Springer, 2013, pp. 481–495.

[37] J. Baca, P. Pagala, C. Rossi, M. Ferre, Modular robot systems905

towards the execution of cooperative tasks in large facilities,
Robotics and Autonomous Systems 66 (2015) 159–174.

[38] T. M. Roehr, F. Cordes, F. Kirchner, Reconfigurable integrated
multirobot exploration system (RIMRES): heterogeneous mod-
ular reconfigurable robots for space exploration, Journal of Field910

Robotics 31 (1) (2014) 3–34.
[39] H. Ahmadzadeh, E. Masehian, M. Asadpour, Modular robotic

systems: characteristics and applications, Journal of Intelligent
& Robotic Systems 81 (3-4) (2016) 317–357.

[40] M. S. Emami Taba, Solving traveling salesman problem with915

a non-complete graph, Masters thesis, School of Computer Sci-
ence (2010).

[41] R. W. Floyd, Algorithm 97: shortest path, Communications of
the ACM 5 (6) (1962) 345.

[42] N. M. Razali, J. Geraghty, Genetic algorithm performance with920

different selection strategies in solving TSP, in: Proceedings of
the world congress on engineering, Vol. 2, 2011, pp. 1134–1139.

[43] D. S. Johnson, Local optimization and the traveling sales-
man problem, in: International Colloquium on Automata, Lan-
guages, and Programming, Springer, 1990, pp. 446–461.925

[44] G. Reinelt, TSPLIB-a traveling salesman problem library, OR-
SA journal on computing 3 (4) (1991) 376–384.

18

89

Chapter 5

Analysing Collaborative Localisation

Properties

This chapter analyses the conditions which make Collaborative (or Cooperative) Local-

isation (CL) perform effectively. Prior to this, it was unclear what conditions make CL

worthwhile, and what the weaknesses are of the widely available Extended Kalman

Filter (EKF). A number of sensor qualities (position accuracy, yaw accuracy, sample

rate), communication rates, and number of robots are analysed for both homogeneous

and heterogeneous systems. Trends were found in simulation using a popular dataset,

and confirmed in hardware-in-the-loop experiments. It is found that CL is less effective

in homogeneous systems, systems with very fast inter-robot detections, and systems

with minimal access to exteroceptive sensors such as GPS.

It may be useful to read Appendix A before this chapter to contextualise how CL

can be used on physical platforms.

90

Statement of Authorship

Paper Title: Analysis of Cooperative Localisation Performance Under Vary-
ing Sensor Qualities and Communication Rates

Status: Accepted on 29 September 2018

Details: Published in Robotics and Autonomous Systems, vol 110, pp
73-84, 2018

Principal Author

Name: Nick Sullivan

Contribution
Details:

Performed literature review on algorithms for localising with
multiple robots, categorising them by the types of environments
where they are used. Discovered the lack of research on how
system conditions affect collaborative localisation. Implemented
collaborative localisation in simulation and in a hardware-in-the-
loop system. Developed and performed tests to analyse how
sensor quality and communication properties affects collabo-
rative localisation performance. Parsed and analysed results.
Prepared the manuscript and generated all figures.

Contribution
Percentage (%):

80

Signature: Date: 17 Mar, 2019

91

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

1. the candidate’s stated contribution to the publication is accurate (as detailed
above);

2. permission is granted for the candidate to include the publication in the thesis;
and

3. the sum of all co-author contributions is equal to 100% less the candidates stated
contribution.

Name: Steven Grainger

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 15 Mar, 2019

Name: Ben Cazzolato

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 13 Mar, 2019

92

Robotics and Autonomous Systems 110 (2018) 73–84

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Analysis of cooperative localisation performance under varying
sensor qualities and communication rates
Nick Sullivan ∗, Steven Grainger, Ben Cazzolato
The University of Adelaide, South Australia 5005, Australia

h i g h l i g h t s

• We alter and analyse parameters affecting Cooperative Localisation (CL).
• Simulations are performed in MATLAB, and validated on hardware-in-the-loop experiments.
• Our findings will help determine the suitability of CL for a system.

a r t i c l e i n f o

Article history:
Received 7 March 2018
Received in revised form 26 July 2018
Accepted 29 September 2018
Available online xxxx

Keywords:
Cooperative localisation
Multi-robot
Performance analysis
Kalman filter

a b s t r a c t

Cooperative Localisation (CL) is a robust technique used to improve localisation accuracy in multi-robot
systems. However, there is a lack of research on how CL performs under different conditions. It is unclear
when CL is worthwhile, and how CL performance is affected if the system changes. This information is
particularly important for systems with robots that have limited power and processing, which cannot
afford to constantly perform CL. This paper investigates CL under varying sensor qualities (position
accuracy, yaw accuracy, sample rate), communication rates, and number of robots for both homogeneous
and heterogeneous multi-robot systems. Trends are found in MATLAB simulations using the UTIAS
dataset, and then validated on Kobuki robots using an OptiTrack-based system.We find that yaw accuracy
has a substantial effect on performance, a communication rate that is too fast can be detrimental, and
heterogeneous systems are greater candidates for cooperative localisation than homogeneous systems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental challenge for mobile robotics is calculating the
position and orientation (pose) of robotswithin their environment,
known as localisation. This is necessary for robots to accurately
interact with their environment, as well as for interactingwith one
another. In many industries, multiple robots operate within the
same environment, known as multi-robot systems. Industries such
as agriculture [1],warehouse automation [2], search and rescue [3],
environment monitoring [4], healthcare assistance [5], mining [6],
transport [7], and assembly [8], are beginning to use mobile robots
in everyday operations. To address the localisation problem, robots
are typically equipped with two types of sensors. The internal
state of robots aremeasured by interoceptive sensors, such as gyro-
scopes, accelerometers, andwheel encoders. Interoceptive sensors
reliably provide data, but have pose errors that accumulates over
time. Exteroceptive sensors interact with the environment, such
as GPS, cameras, and LIDARs. Exteroceptive sensors do not suffer
from error accumulation, but they are sensitive to environment

∗ Corresponding author.
E-mail address: nicholas.sullivan@adelaide.edu.au (N. Sullivan).

conditions. For example, localisation using GPS requires satellite
signals, LIDARs require static terrain or recognisable features, and
cameras require certain lighting conditions. There exists a lot of
research in creating systems that are robust to exteroceptive sen-
sor outages [9,10]. In multi-robot systems, the environment can
be measured by multiple robots. The robots can then share their
information to improve localisation. This is known as Cooperative
Localisation (CL).

There are two major areas of research for CL, one is known
as Cooperative Simultaneous Localisation and Mapping (C-SLAM),
where robots independently producemaps of the environment and
then share and combine those maps. C-SLAM was a key contrib-
utor for the winning team of the MAGIC 2010 competition [11],
where robots had to autonomously survey and map a 500 m
× 500 m dynamic urban environment. Communication was not
always available, so individualmapping andmap fusionwas neces-
sary to continue surveillance during communication down-times.
C-SLAM has also been used for tasks such as mapping a large area
with aerial vehicles [12], localising underwater vehicles to reduce
the need for surfacing [13], and to identify and track dynamic
targets [14].

C-SLAM can be powerful, but it has requirements that make it
unsuitable in certain systems. Firstly, each robot must have SLAM

https://doi.org/10.1016/j.robot.2018.09.010
0921-8890/© 2018 Elsevier B.V. All rights reserved.

93

74 N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84

capabilities. This can inflate the cost of multi-robot systems, as
effective SLAM often makes use of high quality sensors such as
3D LIDARs. Each robot must also be capable of processing data
quickly, either through on-board processing or communication,
and is therefore not suitable for systems with inexpensive proces-
sors or unreliable communication. Secondly, SLAM performance is
dependent on the type and number of landmarks in the environ-
ment [15]. For example, SLAM does not operate well in open areas
where there are few recognisable features.

The other major area for CL research involves measuring and
communicating inter-robot observations. This differs fromC-SLAM
in that no map sharing occurs. Robots observe one another, esti-
mate each others position, and communicate their estimates to the
observed robots. There are no requirements for how robots localise
andperform inter-robotmeasurements, allowing individual robots
to have different sensors, processing capabilities, and internal rep-
resentations of the environment. There is also less dependence on
the environment, as it is able to operate provided robots are able
to detect one another. This method is the focus of this paper.

Communicating and processing inter-robot measurements in-
curs a cost of bandwidth, energy, and processing time. To date,
CL papers assume these costs are negligible, and therefore com-
municate whenever possible. However, there are scenarios where
bandwidth and power are not readily supplied, and over-use of
these resources can lead to mission failure. It has been shown that
CL can be used but not when it should be used, or what system
changes can be made to improve its effectiveness.

We analyse the efficiency and effectiveness of using CL for
indoor ground vehicles under varying sensor quality, inter-robot
communication rate, and the number of robots. We make use of a
commonly used dataset, and then compare these results using real
indoor robots.

Section 1 introduces the concept of cooperative localisation and
other recent works. Section 2 discusses the CL approach, including
the implementation, sensor fusion, and calibration. Section 3 con-
tains the simulation results, showinghow the systemconfiguration
affects the effectiveness and efficiency of cooperative localisa-
tion. Section 4 contains information about the physical system, in-
cluding hardware information, software flow, and implementation
points of note. Section 5 includes results from physical tests, which
is compared to simulation. Section 7 discusses the results and their
relevance to previous and future research. Section 8 concludes the
paper.

1.1. Related works

Cooperative localisation (CL) was first addressed in 1994 [16],
where robots periodically ‘leap-frogged’ past one another. The sta-
tionary robots took the role of stationary landmarks, allowing the
mobile robots to more accurately measure their own movement.
More recently, CL techniques involve communication between the
robots. This allows cooperation to be used without constraining
robot movement.

An obvious use case for CL is for localisation assistance. Robots
with accurate localisation capabilities assist in the localisation of
robotswith less expensive or broken sensors. Thiswas shown to be
beneficial in experiments where ground vehicle leaders localised
followers [17]. CL can also be used as a backup localisationmethod,
where robots attempt to communicate when their primary locali-
sation source is unavailable. This was shown to work in a simula-
tion of smart carsmoving through tunnels and urban canyons [18].
GPS sensors are unavailable during these areas, so CL was used
until GPS signals returned.

CL is not restricted to land, it has been used in air and under-
water vehicles as well. A team of simulated underwater vehicles
were able to localise themselves by identifying their distance from

a surface vehicle [19]. The surface vehicle was equippedwith a GPS
unit. This provided accurate localisation for all vehicles without
the need for high quality sensors in every vehicle. Ground and air
vehicles performed CL to improve performance [20], where ground
vehicles were equipped with QR codes, and drones had cameras
that were able to estimate distance and angles.

Inspired by the original 1994 technique, CL has been used to
improve 3D mapping of large buildings [21]. Child robots periodi-
cally take the role of stationary landmarks in order to improve the
localisation of a parent robot. The parent robot is equipped with
a 3D LIDAR, and controls the child robots as a means to maintain
a high localisation accuracy, which results in more accurate 3D
maps.

There are a number of differentways to implement CL. Commu-
nication is often two-way so that communicatedmessages are ben-
eficial to both robots, and itwas found that using range and bearing
is more useful than using either individually [22]. While many
papers assume that inter-robot measurements will also identify
the robot, some have dealt with anonymous detections [23]. There
has also been work on network topologies for instances where
communication between robots is non-trivial [24].

CL implementationsmost commonly use a decentralised frame-
work [17,25–27], citing the fragility and lack of scalability of cen-
tralised systems, and often use a centralised system as a bench-
mark. Recent research in this area [17,24,25,28] has used a publicly
available multi-robot collaboration dataset known as Multi-robot
Cooperative Localisation And Mapping (MRCLAM) [29]. This dataset
was collected from five ground vehicles in an indoor location
equipped with visual markers for inter-robot observations. The
dataset contains the raw inter-robot observations, as well as the
ground truth position and orientation of each robot as recorded
using a 10-camera Vicon motion capture system with millimetre
accuracy.

Recent literature has proposed a large number of cooperative
localisation algorithms for improving scalability, reliability, and
accuracy for different scenarios. Wanasinghe et al. [17] used a
Cubature Kalman Filter (Gaussian-based particle filters that can
intrinsically carry covariances, [30]) to show the improvements
that can be made when a subset of robots have superior sensing
capabilities. C̆urn et al. [27] applied a Common Past-Invariant En-
semble Kalman Filter to improve localisation of a number of road
vehicles with regions of no GPS coverage. They argue that cooper-
ative localisation is much cheaper to implement than introducing
localisation infrastructure such as beacons.

De Silva et al. [25] developed an algorithm that tracks other
robots with registration and correction stages. Each robot commu-
nicates the inter-robot observations as well as their own velocity.
The robots use a standard Kalman Filter for fusing interoceptive
sensors, and Covariance Intersection to incorporate the tracking
information. Covariance Intersection is very similar to a Kalman
Filter, with the key difference being that Kalman Filters assume all
inputs are independent, whereas Covariance Intersection assumes
all inputs are dependent.

The reason for these different filters is that cooperative localisa-
tion violates the assumption of independence used in a Kalman Fil-
ter. If a robot influences another robot’s pose estimate, then inter-
robot observations from that robot are no longer independent. This
circular reasoning problem is called data incest. Data incest leads to
improper covariance values within a filter, which in turn leads to
sub-optimal fusion.

Li et al. [26] developed a method using a Split Covariance In-
tersection Filter that specifically aims to deal with data incest in
cooperative localisation. Regular sensory information is fused in
an EKF, while the inter-robot information is fused separately by
Covariance Intersection.

94

N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84 75

Fig. 1. A graphical depiction on how inter-robot position and uncertainty are
calculated. The circles are robot positions, and the shaded regions represent the
uncertainty in positions and orientations. (a) The observed robot’s position is the
vector addition of the observing robot’s position and the inter-robot measurement.
(b) The uncertainty of the observed robot’s position is a function of the observing
robot’s uncertainty. Yawuncertainty stretches the uncertainty region, for small yaw
uncertainty this can be represented by an ellipse.

2. Approach

The cooperative localisation method used in this paper is as
follows. If a robot detects another robot, it measures the range and
bearing between them. The inter-robot observation is combined
with the observing robot’s pose to produce a position estimate
of the observed robot. This can be seen graphically in Fig. 1(a).
The position uncertainty of the observed robot is calculated from
the pose uncertainty of the observing robot and the uncertainty
of the inter-robot measurement, as shown graphically in Fig. 1(b).
Uncertainty is represented as a covariancematrix. This information
is then communicated to the observed robot.

We make use of the MRCLAM dataset [29], which provides
the poses and inter-robot observations of five indoor robots. Ex-
teroceptive sensor readings were generated by sampling the true
positions of the robots and adding 0-mean Gaussian noise. The
sampling rate and standard deviation of the exteroceptive sensors
could then be adjusted to any desired value. The interoceptive sen-
sor readings are also generated from true positions, using a noise
profile generated from Kobuki robots operating at The University
of Adelaide. The Kobuki’s use wheel encoders (11.7 ticks/mm) and
a gyroscope (1-axis, up to 110 deg/s) to measure the velocity of the
robots at a rate of 50 Hz. The noise profile has been calculated to
consist of a translation noise (µ = −2.1 cm per metre translation,
σ = 3.0 cm permetre translation) and a rotation noise (µ = 0.57◦

per 90◦ rotation, σ = 0.30◦ per 90◦ rotation). This kind of noise
profile has been used in similar experiments [31].

Inter-robotmeasurements are provided in theMRCLAMdataset,
but have noise that is heavily dependent on the range and bearing
between the observed andobserving robots. This noise distribution
can be seen in Fig. 2. A corrective calibration was applied to
produce inter-robot measurement noise that is less dependent on
bearing and range between robots. The noise calibration equations
were calculated using regression modelling in MATLAB, as shown

Fig. 2. Inter-robot measurement noise from the MRCLAM dataset. The raw error
(top) has noise that is dependent on the range and bearing from the observing robot
to the observed robot. Regression modelling was used in MATLAB to reduce the
dependence on range and bearing to produce calibrated errors (middle). This error
profile was then approximated for use at different rates, overlaying the calibrated
distribution from the MRCLAM dataset (bottom).

in Eqs. (1) and (2). The values of the parameters in these equations
are listed in Table 1.

bearingcalibrated = y + 0.0064 (1)

95

76 N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84

Table 1
Parameter values for the Eqs. (1) and (2).
Parameter Value

x range
y bearing
p00 0.1003
p01 0.0164
p02 0.0960
p10 −0.0191
p11 −0.0014
p12 −0.4977
p20 0.0149
p21 −0.0024
p22 0.0000
p30 −0.0017

rangecalibrated = p00 + p01 ∗ y + p02 ∗ y2 + p10 ∗ x

+ p11 ∗ x ∗ y + p12 ∗ x ∗ y2 + p20 ∗ x2

+ p21 ∗ x2 ∗ y + p22 ∗ x2 ∗ y2 + p30 ∗ x3 (2)

The calibration produces close to 0-mean error, as shown in
Fig. 2. It can be seen that the error ismostly independent of bearing,
but that the range has an effect on measurement noise. Detections
of nearby robots have more accurate range estimations, but less
accurate bearing estimations. Detections of far away robots are the
opposite.

Formost experiments, this calibrated inter-robot datawasused.
In other experiments, faster inter-robot data was required, so an
error approximation profile was created. The approximated noise
profile is shown at the bottom of Fig. 2. This noise profile is able
to generate inter-robot measurement noise from true inter-robot
information.

We use Extended Kalman Filters (EKF) for non-holonomic ve-
hicles, which are widely used for mobile vehicles. The implemen-
tation was taken from a popular package in the Robot Operating
System [32] called robot_localization. It is well known that cooper-
ative localisationwith filters that treat inputs as independent, such
as EKF, will suffer from data incest [27]. Nevertheless, we use EKFs
for the following reasons:

1. CL can successfully be done with EKFs [18,19,26–28]
2. To explore when data incest becomes problematic
3. To support roboticists wanting to use CL but alsowant to use

readily available EKF implementations
4. To provide a benchmark for comparison with more innova-

tive fusion algorithms

In each test, simulated robots are equipped with an exteroceptive
sensor and an interoceptive sensor. The interoceptive sensor con-
sists ofwheel encoders that estimate the pose of the robots relative
to their start position. The exteroceptive sensor is a GPS that
provides position. The data from these sensors are fused into two
Extended Kalman Filters per robot. One of the EKFs also fuses inter-
robot measurement data. It is therefore performing cooperative
localisation, and is called the CL EKF. The other EKF does not fuse
inter-robot measurements. It is performing singular localisation,
and is called the SL EKF.

At time k, each robot stores a state estimate x̂k|k and a state
covariance Pk|k, which contain the estimated pose and velocity, as
well as the uncertainty of these estimations. The EKF performs two
phases; prediction and update. The prediction phase calculates the
robot state based on its prior state:

x̂k|k−1 = Fkx̂k−1|k−1 (3)

Pk|k−1 = FkPk−1|k−1FTk + Qk (4)

The update phase uses sensormeasurements zk with covarianceRk
and observation matrix Hk to improve the state:

Innovation: ỹk = zk − Hkx̂k|k−1 (5)

Innovation Covariance: Sk = HkPk|k−1HT
k + Rk (6)

Kalman Gain: Kk = Pk|k−1HT
kS

−1
k (7)

Updated State: x̂k|k = x̂k|k−1 + Kkỹk (8)

Updated Covariance: Pk|k = (I − KkHk)Pk|k−1 (9)

The values of the matrices Fk and Qk can be found in the appendix.
Two scenarios were used for experiments, homogeneous and

heterogeneous. In thehomogeneous case, every robotwas equipped
with sensors of the same accuracy and period. In the heteroge-
neous case, one of the robots had superior sensors. The exact details
of the sensors depend on the test, and are discussed in the results
section.

3. Results

Cooperative localisation simulations have been performed in
MATLAB. Each test is in one of two scenarios: homogeneous, where
each robot has the same sensor quality, and heterogeneous, where
one of the robots has superior sensing capabilities. The superior
robot is known as the parent, and the other robots are known as
the children. In every test the robots have the same interoceptive
sensors, and only the exteroceptive sensors are altered. The exact
exteroceptive sensor specifications are detailed in each section. In
every test the robots maintain two filters each, one which fuses
local and inter-robot information (CL), and one which only fuses
local information (SL).

The positions of the robots, as output by the filters, were com-
pared at each timestamp to the ground truth. From this, a mean
position error could be generated for CL and SL cases. All com-
munication between robots is logged in order to calculate the
improvement per message sent. The tests involved altering exte-
roceptive sensor accuracy, exteroceptive sensor rate, inter-robot
communication rate, and number of robots.

3.1. Exteroceptive sensor accuracy

Fig. 3 shows the performance improvement by using cooper-
ative localisation under two scenarios. In the homogeneous sce-
nario, every robot is equipped with a GPS sensor providing mea-
surements once per second, with accuracy that was varied. The
heterogeneous scenario differs in that the parent robot has high
accuracy differential GPS with a constant standard deviation of
10 cm. The localisation errors were averaged over the children
robots and plotted in Fig. 3. The CL improvement was calculated by
dividing the mean SL position error by the mean CL position error.

It can be seen that it ismore effective to use CLwhen robots have
poor localisation. The inter-robotmeasurement noise becomes less
significant when the robots have large localisation errors. Robots
with very poor pose estimates benefit strongly from more infor-
mation, whereas robots with good pose estimates do not benefit
as much.

Considering theheterogeneous robots, CL performsbetterwhen
the children have poor localisation. This is as expected, cooperative
localisation can propagate the high accuracy position information
to the children. The parent had a SL position error of 0.013 m,
which is 3–30 times more accurate than the children. As the level
of heterogeneity increases, the overall improvement increases, as
seen by the widening gap between the homogeneous and hetero-
geneous trend-lines.

For the parent, however, the use of CL is less effective as het-
erogeneity increases. For the rightmost data points, we see that
the four children received 40% localisation improvement, and the
parent was worsened by 2%. This is a substantial improvement
on average, but the improvement is not equally distributed. It is
more effective to use CL when robots have different localisation
accuracy, but this benefit is one-sided.

96

N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84 77

Fig. 3. One parent robot and four children robots localise using cooperative local-
isation (CL) and singular localisation (SL) in simulation. The child robots had GPSs
with a period of one second, with an accuracy that was adjusted from 0.1 to 5 m.
The parent robot had the sameGPS quality in the homogeneous scenario, and higher
accuracy GPS in the heterogeneous scenario.

Withperfect information fusion theparent shouldneverworsen
their localisation through CL, and is clearly an artefact of an EKF. If
using an EKF, it may be beneficial to not fuse CL information on the
parent robot at all.

3.2. Exteroceptive sensor period

Fig. 4 illustrates the average localisation improvement when
using CL. In these tests, each child robot has a GPS providing
position with a standard deviation of 1 m. The period of the sensor
is varied between 1 s and the simulation time of 1500 s. In the
homogeneous scenario, the parent robot had the same GPS sensor
quality as the children. In the heterogeneous scenario, the parent
had a differential GPS providing positionwith a standard deviation
of 0.1 m and a period of 1 s.

As the exteroceptive sensor period changes, so too does the
singular localisation accuracy. The change in singular localisation
accuracy will have an effect on the performance of CL. Therefore
the change in CL performance is caused by two factors: the change
in sensor period (the independent variable), and the change in
accuracy. It is possible to separate these factors using the trend-
lines in Fig. 3. These are shown in each graph of Fig. 4 as a red
line. The difference between the total localisation CL improvement
(blue) and the CL improvement due to localisation accuracy (red) is
the CL improvement due to exteroceptive period (purple). Through
this process, the purple line has been normalised to a period of 1 s.

In Fig. 4, we can see some key differences between the homo-
geneous and heterogeneous scenarios. For the heterogeneous sce-
nario, CL is more effective for the children robots, i.e. the children
are able to leverage the superior sensing capabilities of the parent.
The CL improvement due to exteroceptive period (purple) shows a
clear improvement as the children’s sensors become slower. This
same trend is shown for the parent robot. For the homogeneous
scenario, however, there is a peak. This indicates that the use
of exteroceptive sensors that are very fast or very slow may be
inferior candidates for CL using an EKF.

While the heterogeneous system performs better, a system
with fewer exteroceptive sensors, could theoretically be more af-
fected by data incest. With fewer sources of independent informa-
tion, the same information is propagated throughout the system,
causing more circular reasoning. We expect that the use of filters

Fig. 4. Four robots (children) had their GPS sensor periods varied from 1 to 1500 s.
One robot (parent) either had the same sensor as the children (homogeneous)
or a differential GPS with 0.1 m accuracy and 1 s period (heterogeneous). The
mean localisation errors for cooperative localisation (CL) and singular localisation
(SL) cases were measured. Each graph plots the total localisation improvement
from using CL, the CL improvement solely due to localisation accuracy, and the
CL improvement due to GPS sensor period. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

97

78 N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84

that avoid data incest will have greater applicability in systems
with few exteroceptive sensors.

We can also see that localisation accuracy has a greater effect
than exteroceptive period. Note that there is a gap between 100
and 1000 s because there are insufficient numbers of exteroceptive
sensor readings in this region to indicate a clear trend.

3.3. Communication rate

Communication rates have significant effect on CL performance.
Fig. 5 shows the localisation improvement when using CL while
varying communications rate from 0.5 Hz to 50 Hz. Each child
robot is equipped with a GPS with standard deviation of 1 metre
and period of 1 s. In the homogeneous scenario, the parent is
equipped with the same GPS as the children robots. In the hetero-
geneous scenario, the parent is equipped with a differential GPS
with 0.1metre accuracy. The results for a homogeneous system are
as one might expect, the faster the robots communicate, the more
accurate the localisation becomes. This occurs with diminishing
returns, so in general it is more effective to send more messages,
but more efficient to send fewer messages.

For the children robots in the heterogeneous system, the local-
isation improves as expected from 0.5 to 10 Hz. But as commu-
nications rate increases beyond 10 Hz the position improvement
gets worse. This is due to a violated assumption in the Extended
Kalman Filter. It expects zero-mean information, but inter-robot
messages are biased by the observer. Looking back at the vector
addition in Fig. 1, it can be seen that observer localisation error will
be added to the inter-robot message. If the inter-robot messages
are generated before the observer is able to significantly update its
pose estimate, then the inter-robot messages will not have zero-
mean error. In addition, the messages are received very quickly,
leading to the receiving robot becoming overconfident in the inter-
robot messages. The filter will then prioritise interrobot messages
over GPS. Effectively thismeans that for the EKF there is an optimal
communication rate that is dependent on the observer’s localisa-
tion accuracy and update rate. This is an area where state of the art
filters would be beneficial, as it is expected that this falloff would
not occur if the filter tracked information dependency. For the
parentwe see that small amounts of communication are beneficial,
but quickly become detrimental after 2 Hz. This supports earlier
results in this paper that it is advisable to ignore CL information
for robots with good localisation in an EKF.

3.4. Yaw accuracy

When using inter-robot measurements that include range and
bearing, the bearing accuracy is dependent on the observing robots
yaw accuracy, as seen in Fig. 1. Robots had exteroceptive sensors
providing both position and orientation, such as from a camera
performing Simultaneous Localisation and Mapping (SLAM). The
yaw accuracy was varied to find its effect on localisation accuracy.
In Fig. 6, we can see that it is substantially more effective to use CL
when robots have accurate yaw.

3.5. Number of robots

The number of robots participating in the simulationwas varied
to determine its effect on localisation performance. Fig. 7 shows
the results of up to five homogeneous robots, equipped with GPS
units with 1 m standard deviation with 1 s period. The data points
involving two, three and four robots were averages of all sub-
sets of the five available robots. Predictably, having more robots
improves localisation accuracy. However, the efficiency of CL de-
creases slowly themore robots are involved. This is because the use
of CL becomes less efficient as localisation becomesmore accurate,
as found earlier.

Fig. 5. The communication rate between robots was varied to determine its effect
on cooperative localisation (CL) performance. In the homogeneous case, the parent
robot had equal GPS quality to four child robots. In the heterogeneous case, the
parent had superior GPS. Each graph illustrates the total performance improvement
by using CL, as well as the improvement per 1000 messages sent between robots.

98

N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84 79

Fig. 6. Yaw accuracy was varied to determine its effect on cooperative localisation
(CL) performance over singular localisation (SL).

Fig. 7. The number of robots was varied to determine its effect on cooperative
localisation (CL) performance.

4. Experimental system

A hardware-in-the-loop system was used to demonstrate that
the results found in simulation have relevance to the real world.
The physical system uses YujinRobot Kobukis (Fig. 8) equipped
with controllers in the form of Raspberry Pi 3 Model B’s running
Robot Operating System (ROS). This system is an example of low-
cost hardware that would not be able to perform cooperative
localisation all the time, as its limited processing power would be
needed for other duties.

ROS is awidely used robotics repository andmiddleware. It pro-
vides transparent message transport between and within robots.
ROS uses a series of nodes that perform specific functions. These
packages can be downloaded from the ROS repository, or custom
made. Many robots, including Kobukis, provide ROS interoper-
ability as standard. The software flow and ROS package usage is
detailed in Section 4.1.

The Kobukis are mounted with a series of reflective markers in
unique orientations. The poses and ID’s of the Kobuki’s are tracked
at 100 Hz in real-time using a 6-camera OptiTrack camera system.
The system can be seen in Fig. 9. The Kobuki’s move in a set

Fig. 8. YujinRobot Kobuki’s were controlled by Raspberry Pi’s running ROS. Each
Kobuki is equipped with wheel encoders (11.7 ticks/mm) and a 1-axis gyroscope.

pattern over 300 s. Each sensor configuration was tested five times
to produce a distribution of results.

4.1. Software

A number of components were used in conjunction to success-
fully perform cooperative localisation, as shown in Fig. 10. The
robots have a set of reflective markers mounted on the top to
determine their poses. These markers are uniquely distributed to
identify each robot. This information is streamed via the Virtual
Reality Networking Protocol (VRPN) using Motive software for
robot pose tracking. This protocol is used to communicate the
poses of all tracked objects. The poses are then read by the central
computer, which converts the VRPN pose (Y-up convention, stan-
dard in computer vision) into the ROS system (Z-up convention).
The central computer then performs the following tasks:

1. Logs the true poses of the robots
2. Sends exteroceptive sensormessages to robots that contain:

• Robot pose such as from GPS or SLAM, produced by
adding Gaussian noise to the true pose

• Distance and bearings to other robots (if within view-
ing range), with noise added using the function out-
lined in Section 2

3. Sends control messages to drive the robots in a pre-determ
-ined path for repeatable tests.

The robot controllers (Raspberry Pi 3 Model B’s) receive the
exteroceptive sensor information, and parse it into the individual
global and interrobot pose information. Global pose information
represents data as from GPS or SLAM, as opposed to local informa-
tion from the wheel encoders and gyroscope. The global poses are
fused into the two Extended Kalman Filters, implemented in the
publicly available robot_localization package in ROS. One fuses all
exteroceptive and interoceptive sensor information (Cooperative
Localisation EKF), and the other fuses the same but without inter-
robot measurements (Single Localisation EKF). The logged outputs
of the two filters can then be compared to determine how cooper-
ative localisation affects localisation. The local poses fused into the
filters come from the Kobuki’s on-board encoders and gyroscope,
using a standard Kobuki interface node kobuki_node.

The output of the CL EKF is combined using vector additionwith
interrobot measurements. This process happens in the Interrobot
Client node. The resulting tracked position is sent via Wi-fi to the

99

80 N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84

Fig. 9. The experimental setup. OptiTrack cameras track reflective markers to determine the position and orientation of the Kobuki robots.

Fig. 10. The software flow for the real system of Kobuki robots. Each Kobuki is equipped with visual markers to be detected by vision tracking cameras. The robot poses
are streamed to the central laptop. The central laptop logs the position, adds noise, and sends this information to the robots. Robot controllers fuse sensory information and
communicate with one another. They also interact with the Kobuki for on-board sensory information and movement.

target robot, which receives and fuses the tracked position into
their CL EKF. When a robot receives the tracked position, it re-
spondswith its ownposition estimate, allowing both robots to gain
newposition information based on each inter-robotmeasurement.

4.2. Implementation points of note

The standard operating procedure for ROS is to have a single
ROS Master. All nodes communicate to the Master to form topic-
based links to other nodes. Once the link is established, communi-
cation occurs directly between the linked nodes using TCP. It was
found, however, that each robot used a large amount of bandwidth,
causing excessive delays for critical information. This was due to
the standard ROS topic tf, which contains high frequency transfor-
mation information between hardware components (e.g. the posi-
tion of the left wheel relative to the base). This topic is shared by
all parties, meaning every robot sent high frequency unnecessary
information to all the other robots. To alleviate this, we made use
of the multimaster_fkie package. This package allows the central
computer and every robot controller to use their own ROS master,
with specified topics being dynamically synchronised between

the ROS environments. The transformation topic tf could then be
excluded from synchronisation, significantly reducing bandwidth
usage.

The robots were on a local network, so they could not use the
internet as a source of timing synchronisation. In lieu of this, made
use of chrony. Each robot then used the central laptop as the time
server, periodically polling and adjusting clock times as necessary.
Without this, the Raspberry Pi robot controllers would default to
times that were days out of sync.

There was also an issue of interrobot message time delay. In
simulation, the delay from observing a robot to fusing the estimate
is 1 timestep (10 ms). In the real system, however, the time it
takes to perform an interrobot measurement has an observable
impact. Not taking this into account led to all interrobot messages
lagging slightly behind the true position. This effect compounded
upon itself: robot pose estimates are affected by a lagged inter-
robot measurement, so future interrobot position estimates be-
come evenmore lagged. This significantly negatively impacted the
performance of cooperative localisation. For our system, the time
delay was measured to be ∼70 ms. All interrobot measurements
were past-dated by this time, and the problems were no longer an
issue.

100

N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84 81

5. Experimental results

The tests in simulation, detailed in Section 3, were repeated
for the hardware-in-the-loop system. This was done to determine
if physical implementation had significant effects on the results
found in simulation. Elements such as time delay, data loss, and
lack of synchronisation could have pertinent effects on the perfor-
mance on cooperative localisation. While the experimental results
are only for onephysical system, they are not intended as a rigorous
investigation inhow these elements affect cooperative localisation.
Rather, they are used to validate the simulation data.

Four Kobukis were moved in a set path five times for each ex-
periment. The experiments lasted for 300 s. As outlined in Section
3, exteroceptive sensingwas simulated so that it could be altered to
custom rates and accuracies. Interoceptive sensors, however, were
performed by the physical robot, and were never adjusted.

The experiment details are listed in each section, and will be
compared with the equivalent simulation experiments.

Note that the experimental robots are not traversing the same
paths as the simulated robots due to insufficient space, so the
numbers should not be directly compared. However, we believe
the trends remain valid.

5.1. Exteroceptive sensor accuracy

The graph in Fig. 11 shows the change in position error by using
cooperative localisation. Two scenarios are explored. Three child
robots were equipped with GPS sensors that provide measure-
ments once per second with an accuracy that was varied for each
test. In the homogeneous scenario, the parent robot had identical
sensing capabilities. In the heterogeneous scenario, the parent had
a superior GPS with standard deviation of 0.1 m.

Data has been fittedwith a line, as there is not enough precision
to determine the exact relationship. It can clearly be seen that CL
is more efficient when position error is larger. We can also see that
the children robots are benefited by a parent with high accuracy
sensing, but the parent is affected to a much lower extent. One
difference between these results and those found in simulation
is that the parent robot always has, on average, a non-negative
localisation improvementwith CL. The difference in slope between
simulation and experiment is quite small, and may disappear with
more samples.

5.2. Exteroceptive sensor period

Exteroceptive sensor accuracy was held constant, and the pe-
riod was adjusted. The localisation error and improvement is
shown in Fig. 12. The children robots each have a GPS providing
position with a standard deviation of 0.1 m. The period of the
sensors is varied between 1 s and the run time of 300 s. Each
period was performed five times. The total CL improvement (blue)
improves as the period is larger, then drops significantly when the
period is as long as the experiment for the homogeneous scenario.
Whereas for the heterogeneous scenario, the same drop-off does
not occur. This closely matches the results for simulation found in
Section 3.2.

Considering the CL improvement due to exteroceptive period
(purple), we can see that it decreases as the exteroceptive period
increases. For the homogeneous scenario, there is a large dip when
the exteroceptive period is as large as the length of the experiment.
This dip does not occur for the heterogeneous scenario. These
results are similar to those found in simulation in Section 3.2. A
difference is that the hardware-in-the-loop experiments indicate
that an increased exteroceptive period may have negative or neg-
ligible effect on CL performance, whereas in simulation it had a
distinct positive improvement. This could be due to the effect of

Fig. 11. One parent robot and four children robots localise using cooperative local-
isation (CL) and singular localisation (SL) using hardware-in-the-loop simulation.
The child robots had GPSs with a period of one second, with an accuracy that
was adjusted from 0.1 to 4 m. The parent robot had the same GPS quality in the
homogeneous scenario, and higher accuracy GPS in the heterogeneous scenario.

time delays, EKF tuning values, or non-linearities not accounted for
by the simulation.

Limited analysis can be done of the parent robot, as the uncer-
tainty ranges are larger than the localisation improvement. What
we can say is that the impact on the parent is far smaller than that
of the children, which is also the case for the simulation.

5.3. Communication rate

The rate of communication between robots was adjusted be-
tween 0.1 and 15 Hz. At frequencies above 15 Hz, the robots were
unable to process all information in real-time. This caused sensor
readings to be dropped, producing increased localisation error for
CL and SL, as they were both executed on the same processor for
each robot. The results are shown in Fig. 13. Both the homogeneous
andheterogeneous cases showCL improvement as communication
rate increases, along with decreased CL efficiency. They both reach
a limit, at which point increasing communications rate provides
no benefit. This matches the results found in simulation, detailed
in Section 3.3. It is suspected that higher frequencies for the het-
erogeneous case would display a fall-off as shown in simulation,
but the system was unable to reach the required frequencies.

5.4. Yaw accuracy

Robots were equipped with exteroceptive sensors providing 1
m position error and orientation error adjusted between 1 and
40 degrees. The robots also had orientation information from on-
board encoders and gyroscopes, with an error profile of approxi-
mately µ = 0.57◦ per 90◦ rotation, σ = 0.30◦ per 90◦ rotation.
The CL localisation improvement can be seen in Fig. 14. As yaw
error increases, the use of CL becomes less effective. This matches
results seen in simulation in Section 3.4.

5.5. Number of robots

Experimentswere conductedwith a differing number of robots.
In the experimental system, the number of robots was adjusted
between 1 and 4. The robots were given exteroceptive sensor
information with 1 m accuracy at a period of 1 s Fig. 15 shows
the localisation improvement when using CL. The improvement
increases asmore robots are used, but the efficiency decreases. This
closely matches the results found in simulation.

101

82 N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84

Fig. 12. Three robots (children) had their GPS sensor periods varied from 1 to 300 s.
One robot (parent) either had the same sensor as the children (homogeneous) or a
superior GPS (heterogeneous). Themean position errors for cooperative localisation
(CL) and singular localisation (SL) cases were measured. Each graph plots the total
localisation improvement fromusing CL, the improvement solely due to localisation
accuracy, and the CL improvement due to GPS period.

Fig. 13. The communication rate between robots was varied to determine its
effect on cooperative localisation (CL) performance for a hardware-in-the-loop
simulation. In the homogeneous case, the parent robot had equal GPS quality to
three children robots. In the heterogeneous case, the parent had superior GPS. Each
graph illustrates the total performance improvement by using CL, as well as the
improvement per 10 messages sent between robots.

6. Multivariate performance

A function has been created to estimate the predicted coopera-
tive localisation improvement based on the input parameters. This
was performed using MATLAB’s curve fitting toolbox.

ysa = 1.03x0.4889sa (10)

ysp = −0.11 log(xsp)2 + 0.992 log(xsp) (11)

ycr = −9.51x−0.01594
cr + 10.59 (12)

yya = −1.614x0.259ya + 2.25 (13)

ynr = 0.364x0.7634nr − 0.37 (14)

ytotal = ysayspycryyaynr (15)

where xsa is the exteroceptive sensor accuracy (m), xsp is the exte-
roceptive sensor period (s), xcr is the communication rate (Hz), xya
is the yaw accuracy (rad), and xnr is the number of robots. The re-
sulting value ytotal is the average relative improvement in position
accuracy when using cooperative localisation, normalised to 15%,

102

N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84 83

Fig. 14. Yaw accuracy was varied to determine its effect on cooperative localisa-
tion (CL) performance over singular localisation (SL) using hardware-in-the-loop
simulation.

Fig. 15. Experimental result for 300 s using 1–4 robots. The mean position errors
for cooperative localisation (CL) and singular localisation (SL) cases weremeasured,
from which the CL improvement percentages were calculated.

i.e., a ytotal of 1 would have an expected localisation improvement
of 15%, and a value of 2 would have an expected localisation
improvement of 30%.

Similarly, the further improvement obtained by using a single
robot with far greater localisation capabilities, h, is as follows:

hsa = −0.088x−0.4011
sa + 1.041 (16)

hsp = 0.0219 log(xsp)2 − 0.071 log(xsp) + 0.9296 (17)

hcr = −0.08x0.336cr + 0.9755 (18)

hya = 0.6981xya + 1.0475 (19)

htotal = hsahsphcrhya (20)

7. Discussion

The simulation and hardware-in-the-loop results match what
has been observed (and sometimes assumed) in literature, while

also providing new data which have not previously been analysed.
We highlight results and discuss their relevance to previous liter-
ature and future research.

The use of cooperative localisation is more effective when the
robots have poor localisation.While most literature on this subject
assumes this is the case (the authors could not find research on
CL in systems where localisation is already very accurate), our
results match the available analysis of this trend [17]. We also
demonstrate that accurate yaw is of particular importance for
effective use of CL.

CL is more effective in heterogeneous systems, but the benefit
is greater for the robots with poor localisation. CL algorithms have
previously been designed and implemented for very heteroge-
neous cases, where children robots have poor (or non-existent)
localisation and parents have very precise localisation [17,19,28].
In these cases, CL has been implemented as one-way, assuming
that CL will have little benefit to the parents. Our results validate
these assumptions, illustrating that extending CL to be two-way
offers little benefit in very heterogeneous circumstances, and can
even be detrimental when using an EKF.

Using more robots improves the effectiveness of CL, but at
diminishing efficiency. Our results match data found in other stud-
ies [18,22,23,31], and suggests that CL in large swarms may not
show the level of improvement that some might expect [31].

EKF can be used to perform CL, but will suffer from data incest.
Previous works have used EKF to perform CL successfully [18,19,
26–28], and have compared EKF performance with newer state-
of-the-art filters [26–28]. Based on our results, we expect that
these filters will show particularly good improvements in systems
with fast inter-robot communication, and in systems with slow
exteroceptive sensors.

8. Conclusion

This paperwaswritten to help future roboticists design systems
using cooperative localisation. We have profiled its properties
in simulation and through hardware-in-the-loop experiments in
order to better understand the conditionswhere CL is effective and
efficient. We have indicated where the commonly available EKF is
limited, and hence where state-of-the-art filters may be required.

These results provide information for systemswhere the power
and processing costs for performing CL need to be considered.
Rather than constantly performing CL, which drains power and
processor availability, CL could be activated during opportunities
of high efficiency.

Acknowledgements

The Commonwealth of Australia (represented by the Defence
Science and Technology Group) supported this research through a
Defence Science Partnerships agreement.

Appendix A

The EKF state contains the robot’s pose (x, y, yaw) in metres
and radians, and its velocity (forward, sideways, angular) inmetres
per second and radians per second. The filter is discrete, and uses
the time between iterations dt . For simulations, dt = 0.01 s. For
shorthand, we let cy = cos(yaw) and sy = sin(yaw).

x̂ =

⎡⎢⎢⎢⎢⎢⎣
posx
posy
posyaw
velx
vely

velyaw

⎤⎥⎥⎥⎥⎥⎦

103

84 N. Sullivan et al. / Robotics and Autonomous Systems 110 (2018) 73–84

Q =

⎡⎢⎢⎢⎢⎢⎣
0.05 0 0 0 0 0
0 0.05 0 0 0 0
0 0 0.06 0 0 0
0 0 0 0.025 0 0
0 0 0 0 0.025 0
0 0 0 0 0 0.02

⎤⎥⎥⎥⎥⎥⎦

F =

⎡⎢⎢⎢⎢⎢⎣
1 0 dt(−velxsy − velycy) dt(cy) dt(−sy) 0
0 1 dt(−velysy + velxcy) dt(sy) dt(cy) 0
0 0 1 0 0 dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.robot.2018.09.010.

References

[1] Luis Emmi, Mariano Gonzalez-de Soto, Gonzalo Pajares, Pablo Gonzalez-de
Santos, New trends in robotics for agriculture: integration and assessment of
a real fleet of robots, Sci. World J. 2014 (2014) 1–21.

[2] Peter R. Wurman, Raffaello. D’Andrea, Mick Mountz, Coordinating hundreds
of cooperative, autonomous vehicles in warehouses, AI Mag. 29 (1) (2008) 9.

[3] Alfredo Martins, Bruno Ferreira, Hugo Ferreira, Guilherme Amaral, Rui
Almeida, Filipe Silva, Multiple robot operations for maritime search and
rescue in euRathlon 2015 competition, in: OCEANS, IEEE, 2016, pp. 1–7.

[4] Katsuaki Tanaka, Hiroyuki Ishii, Shinichi Kinoshita, Qing Shi, Hikaru Sugita,
Satoshi Okabayashi, Yusuke Sugahara, Atsuo Takanishi, Design of operating
software and electrical system ofmobile robot for environmentalmonitoring,
in: Robotics and Biomimetics, ROBIO, IEEE, 2014, pp. 1763–1768.

[5] Min Chen, Yujun Ma, Sana Ullah, Wei Cai, Enmin Song, Rochas: Robotics and
cloud-assisted healthcare system for empty nester, in: Proceedings of the 8th
International Conference onBodyAreaNetworks, ICST, Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, 2013, pp.
217–220.

[6] Chris Brown, Autonomous vehicle technology in mining, Eng. Min. J. 213 (1)
(2012) 30.

[7] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, Myoungho Sunwoo,
Development of autonomous car-part I: distributed system architecture and
development process, IEEE Trans. Ind. Electron. 61 (12) (2014) 7131–7140.

[8] Ross A. Knepper, Todd Layton, John Romanishin, Daniela Rus, Ikeabot: An
autonomousmulti-robot coordinated furniture assembly system, in: Robotics
and Automation, ICRA, IEEE, 2013, pp. 855–862.

[9] Xiyuan Chen, Chong Shen, Wei-bin Zhang, Masayoshi Tomizuka, Yuan Xu,
Kuanlin Chiu, Novel hybrid of strong tracking Kalman filter and wavelet
neural network for GPS/INS during gps outages, Measurement 46 (10) (2013)
3847–3854.

[10] Xi-Yuan Chen, Jing Yu, Xue-Fen Zhu, Theoretical analysis and application
of Kalman filters for ultra-tight global position system/inertial navigation
system integration, Trans. Inst. Meas. Control 34 (5) (2012) 648–662.

[11] Edwin Olson, Johannes Strom, Ryan Morton, Andrew Richardson, Pradeep
Ranganathan, Robert Goeddel, Mihai Bulic, Jacob Crossman, Bob Marinier,
Progress toward multirobot reconnaissance and the MAGIC 2010 competi-
tion, J. Field Robot. 29 (5) (2012) 762–792.

[12] Christian Forster, Simon Lynen, Laurent Kneip, Davide Scaramuzza, Collabo-
rative monocular SLAMwithmultiple micro aerial vehicles, in: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2013, pp.
3962–3970.

[13] Liam Paull, Guoquan Huang, Mae Seto, John J. Leonard, Communication-
constrainedmulti-AUV cooperative SLAM, in: Robotics andAutomation, ICRA,
2015 IEEE International Conference on, IEEE, 2015, pp. 509–516.

[14] Diluka Moratuwage, Ba-Ngu Vo, Danwei Wang, Collaborative multi-vehicle
slam with moving object tracking, in: Robotics and Automation, ICRA, 2013
IEEE International Conference on, IEEE, 2013, pp. 5702–5708.

[15] Gregory Dudek, Michael Jenkin, Computational Principles of Mobile Robotics,
Cambridge University Press, 2010.

[16] Ryo Kurazume, Shigemi Nagata, Shigeo Hirose, Cooperative positioning with
multiple robots, in: IEEE International Conference on Robotics and Automa-
tion, IEEE, 1994, pp. 1250–1257.

[17] Thumeera R. Wanasinghe, George K.I. Mann, Raymond G. Gosine, Distributed
leader-assistive localization method for a heterogeneous multirobotic sys-
tem, IEEE Trans. Autom. Sci. Eng. 12 (3) (2015) 795–809.

[18] Mariam Elazab, Aboelmagd Noureldin, Hossam S. Hassanein, Integrated co-
operative localization for connected vehicles in urban canyons, in: 2015 IEEE
Global Communications Conference, GLOBECOM, IEEE, 2015, pp. 1–6.

[19] Benedetto Allotta, Riccardo Costanzi, Enrico Meli, L. Pugi, Alessandro Ridolfi,
Gregorio Vettori, Cooperative localization of a team of AUVs by a tetrahedral
configuration, Robot. Auton. Syst. 62 (8) (2014) 1228–1237.

[20] Louis G. Clift, Adrian F. Clark, Determining positions and distances using
collaborative robots, in: Computer Science and Electronic Engineering Con-
ference, CEEC, IEEE, 2015, pp. 189–194.

[21] Ryo Kurazume, Souichiro Oshima, Shingo Nagakura, Yongjin Jeong, Yumi
Iwashita, Automatic large-scale three dimensional modeling using coopera-
tive multiple robots, Comput. Vis. Image Understand. 0 (2016) 1–18.

[22] Ioannis M. Rekleitis, Gregory Dudek, Evangelos E. Milios, Multi-robot cooper-
ative localization: a study of trade-offs between efficiency and accuracy, in:
Intelligent Robots and Systems, 2002 IEEE/RSJ International Conference on,
vol. 3, IEEE, 2002, pp. 2690–2695.

[23] Abdulmuttalib T. Rashid, Mattia Frasca, Abduladhem A. Ali, Alessandro Rizzo,
Luigi Fortuna, Multi-robot localization and orientation estimation using
robotic cluster matching algorithm, Robot. Auton. Syst. 63 (2015) 108–121.

[24] Leigang Wang, Tao Zhang, Feifei Gao, Distributed cooperative localization
with lower communication path requirements, Robot. Auton. Syst. 79 (2016)
26–39.

[25] Oscar De Silva, George K.I. Mann, Raymond G. Gosine, Efficient distributed
multi-robot localization: A target tracking inspired design, in: 2015 IEEE
International Conference on Robotics and Automation, ICRA, IEEE, 2015, pp.
434–439.

[26] Hao Li, Fawzi Nashashibi, Ming Yang, Split covariance intersection filter:
Theory and its application to vehicle localization, IEEE Trans. Intell. Transp.
Syst. 14 (4) (2013) 1860–1871.

[27] Jan Curn, DanMarinescu, Niall O’Hara, Vinny Cahill, Data incest in cooperative
localisationwith the common past-invariant ensemble Kalman filter, in: 16th
International Conference on Information Fusion, FUSION, IEEE, 2013, pp. 68–
76.

[28] MohamedW.Mehrez, George K.I. Mann, RaymondG. Gosine, An optimization
based approach for relative localization and relative tracking control inmulti-
robot systems, J. Intell. Robot. Syst. 83 (2016) 1–24.

[29] Keith Y.K. Leung, Yoni Halpern, Timothy D. Barfoot, Hugh H.T. Liu, The UTIAS
multi-robot cooperative localization and mapping dataset, Int. J. Robot. Res.
30 (8) (2011) 969–974.

[30] Bingbo Cui, Xiyuan Chen, Xinhua Tang, Improved cubature Kalman filter
for GNSS/INS based on transformation of posterior sigma-points error, IEEE
Trans. Signal Process. 65 (11) (2017) 2975–2987.

[31] Frank E. Schneider, Dennis Wildermuth, Influences of the robot group size
on cooperativemulti-robot localisation analysis and experimental validation,
Robot. Auton. Syst. 60 (11) (2012) 1421–1428.

[32] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y. Ng, ROS: an open-source robot operating
system, in: ICRA Workshop on Open Source Software, vol. 3, 2009, p. 5.

Nick Sullivan received his bachelor degrees in mecha-
tronics engineering and computer science from the Uni-
versity of Adelaide, Australia, in 2016. He is currently
working toward the Ph.D. degree in robotics at the Uni-
versity of Adelaide. His research interests include multi-
robot task allocation, unmanned ground vehicles, and
machine learning.

Steven Grainger obtained his Ph.D. on the control of
electric drives fromGlasgowCaledonian University, Scot-
land and holds B.E. degrees in computing and electronic
engineering. He is a lecturer in Control and Embedded
Systems at the University of Adelaides School of Mechan-
ical Engineering. His current research interests include
nanopositioning systems and autonomous vehicles.

Ben Cazzolato received his B.E. in mechanical engineer-
ing at the University of Adelaide, Australia, in 1990. At the
same university, he received his Ph.D. in the field of active
control for sound transmission in 1998. He is currently
a professor at the University of Adelaide, teaching and
researching in the fields of dynamics and control. Current
research interests include modelling of complex electro-
mechanical systems, control of unstable vehicles, active
control and nano-positioning.

104

Chapter 6

Task Allocation with Collaborative

Localisation

This chapter presents and analyses a new algorithm that allocates tasks to multiple

robots while ensuring superior localisation using collaborative localisation techniques.

The task allocation constraint requires robots remain within a sufficient distance of

one another for visual connectivity, but can equally be used to guarantee network

connectivity for communication. Previous algorithms do not guarantee connectivity in

environments with obstacles, and are less scalable than the presented algorithm.

A hardware platform was used to experimentally validate the results. This is

discussed in detail in Appendix A, presented as a conference paper presented to the

Australasian Conference on Robotics and Automation (ACRA 2018). The results are

compared to another algorithm that solves a very similar problem, also written by the

author of this thesis, found in Appendix B, and was presented to the International

Conference of Control, Automation, Robotics and Vision (ICARCV 2018).

105

Statement of Authorship

Paper Title: Formation-Based Multi-Robot Routing with Inter-Robot Dis-
tance Constraints

Status: Submitted for publication

Details: Submitted to IEEE Transactions on Automation Science and
Engineering, 9 Nov 2018

Principal Author

Name: Nick Sullivan

Contribution
Details:

Performed literature review on algorithms for allocating tasks
to robots while maintaining distance between the robots, sepa-
rating them by their consideration of multiple tasks, speed, and
connectivity guarantees. Implemented algorithms from litera-
ture, discovering the violation of connectivity when collision
avoidance is included. Developed a new algorithm that uses
target clustering to provide guarantees even when obstacles are
included. Created tests to illustrate the performance of the new
algorithm relative to those in literature, then wrote the code for
these tests. Implemented the algorithms on real robots. Parsed
and analysed results. Prepared the manuscript and generated all
figures.

Contribution
Percentage (%):

80

Signature: Date: 17 Mar, 2019

106

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

1. the candidate’s stated contribution to the publication is accurate (as detailed
above);

2. permission is granted for the candidate to include the publication in the thesis;
and

3. the sum of all co-author contributions is equal to 100% less the candidates stated
contribution.

Name: Steven Grainger

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 15 Mar, 2019

Name: Ben Cazzolato

Contribution
Details:

Guided research direction. Supervised work development.
Helped generate ideas for tests and edited manuscript.

Signature: Date: 13 Mar, 2019

107

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Formation-Based Multi-Robot Routing with
Inter-Robot Distance Constraints

Nick Sullivan, Member, IEEE, Steven Grainger, Member, IEEE, and Ben Cazzolato

Abstract—We provide a formation-based algorithm to solve
the problem where robots are required to visit multiple targets,
with the added constraint that they must remain within a
certain distance of one another. We show that this algorithm is
more scalable than existing algorithms, and is able to guarantee
distance constraints even in the presence of static obstacles. We
empirically compare its performance to other algorithms, altering
the number of robots, targets, and distance constraint. We then
compare the results to the implementation on real vehicles,
illustrating near identical performance. Finally, we illustrate
how our algorithm can be applied to an example system where
multiple vehicles visually track one another to determine their
locations.

Index Terms—Multi-robot routing, multiple traveling salesman
problem, task allocation

I. NOTE TO PRACTITIONERS

The motivation behind this work is problems with multiple
robots that must move to a number of locations to perform
certain tasks, e.g. manufacture components, transport people,
monitor the environment, or rearrange goods. The innovation
is in the added requirement that they stay near one another,
e.g. to observe one another in order to detect failure; to
be prepared for new tasks that require multiple robots to
work together; to maintain network connectivity over large
distances; or to fuse sensory information from multiple robots
detecting the same area. This paper provides and analyses a
planning algorithm, generating specific paths to be followed
by each robot. The primary objective is to complete all tasks
as quickly as possible, while ensuring robots do not go beyond
the distance limit, and guarantees no robot to robot collisions,
and no robot to static-obstacle collisions. It does not consider
dynamic obstacles, assumes robots are able to stop (i.e., not
suitable for gliders), and assumes all robots have a relatively
small turning circle.

II. INTRODUCTION

Multi-robot routing is the act of planning how robots should
move between target locations. In this paper, we consider
targets that can be visited in any order by any robot. Problems
of this type occur in industries such as transportation [1],
environmental monitoring [2], container loading and unloading
[3], and manufacturing [4]. Inefficient routing can cause delays
and excess energy usage, reducing the amount of useful work
robots can perform. However, this problem is not trivial to
solve. The number of possible routes scales factorially with the

School of Mechanical Engineering, The University of Adelaide, Australia,
5005 e-mail: nicholas.sullivan@adelaide.edu.au

number of targets, requiring enormous amounts of computing
power to consider every route, even for small problems.

The algorithms that have been developed for this problem
can be broadly categorised by solution quality versus process-
ing time. The fastest algorithms to compute are known as
heuristics, and produce routes iteratively. The best performing
heuristics for multi-robot routing are sequential-single item
auctions, where robots bid on targets based on their ability to
complete them. Each round, a target is sold to a robot, which
then updates its bids accordingly. This is repeated until all
targets have been allocated to robots. Different objectives can
be met using different bidding rules [5]. Heuristics are often
used to handle dynamic scenarios as they can be recalculated
quickly [6], [7].

A category of algorithms known as metaheuristics can
produce better solutions than heuristics, but require addition-
al processing time. Metaheuristics are problem-independent
search algorithms that are tuned to solve particular problems.
In this problem, metaheuristics search for good routes amongst
many bad routes. They operate through exploration, finding
new solutions (valid routes) that are not similar to those found
before, and exploitation, improving upon discovered solutions.
Many metaheuristics exist, and it is not yet clear which (if any)
is most suitable for the multi-robot routing problem. Examples
of metaheuristics used to solve the multi-robot routing problem
include genetic algorithms (GAs) [8], simulated annealing [9],
ant colony optimisation [10], and tabu search [11].

In some cases, we can solve the multi-robot routing problem
optimally. Solvers for Integer Linear Programs (ILPs) are
able to ignore a large portion of sub-optimal routes using
techniques such as branch and cut [12]. This requires that the
problem can be represented as an ILP, which limits the types
of objectives and constraints that can be solved. Notably, the
objective to visit all targets in the fastest time is non-linear,
and cannot be represented as an ILP. For applicable objectives
and constraints, ILPs can solve problems of up to 100 targets
in the order of seconds, but scales poorly with more targets
[13].

Literature has previously addressed the additional con-
straints that robots must cooperate for certain tasks to be com-
pleted. Transportation vehicles may need to meet at the same
location to transfer goods [14], re-fuelling stations may only
be able to service one robot at a time [15], and drones may
be used for short-range delivery while returning to a truck for
long-range movement [16]. These are applications considered
as a Vehicle Routing Problem (VRP), using constraints such
as carrying capacity, time windows, and driver hours [17].

However, these constraints only need to consider the time of

108

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

arrival at each target, and do not need to consider the physical
movement between targets. As such, algorithms designed for
these constraints cannot be applied to cases where constraints
are applicable for the entirety of a robots’ journey, not just
their time of arrival at specified targets. One such constraint is
where robots remain near each other during operation in order
to maintain communication capabilities, or to visually observe
one another.

If robots can maintain communication, they can dynamically
re-plan when faced with new targets, obstacles, or hardware
failures. Maintaining distance to other robots also enables the
use of cooperative localisation, where robots work together to
estimate their location and orientation. Cooperative localisa-
tion provides greater performance over singular localisation
[18], and enables the use of robots with poor sensing by
leveraging robots with greater sensing [19].

Recent research on inter-robot distance constraints has
addressed the optimal placement of robots to provide the
best possible network connectivity [20], as well as searching
strategies while maintaining sufficient connectivity to relay
video [21]. Tuning rules can be used to adjust how much
information can be collected before reporting it back to a base
station [22]. A comparison of four communication-based ex-
ploration techniques is available, along with a short taxonomy
of communication-constrained exploration types [23]. When
applied to real systems, it is common for an outer control layer
to make a plan and for an inner control layer to measure and
ensure connectivity remains strong [24], [25]. However, these
techniques consider one target at a time, and do not consider
multiple targets that can be completed in any order.

A bounded solution has been found for a two-robot problem
where robots alternate movement on a small grid [26]. All
targets can be visited using 9/2 of optimal energy usage while
maintaining distance, but under the limiting conditions of a
small grid with alternating movements. A sequential-auction
based heuristic has been created to constrain distance between
robots, known as Connected Nearest Neighbour [27], which
alternates between target allocation and network maintenance
phases. However, it assumes that robots move in straight lines
between targets, which would potentially violate the distance
constraints if the vehicles use obstacle avoidance to move
around obstacles.

Genetic algorithms have been used to search for solutions
that constrain inter-robot distances. One uses a customised
improvement mechanism to turn solutions that break this
constraint into ones that do not [28]. This approach measures
the distance between robots whenever one reaches a target,
which does not necessarily guarantee robots remain within
range at all times. For example, two robots can move different
ways around an obstacle. Another algorithm, known as Dual-
GA, periodically introduces waypoints, and discretises paths
to measure distance for the entire journey [29]. Both these
approaches use randomness to search for valid solutions, and
therefore do not guarantee that a valid result will be found.

We introduce a new algorithm for routing multiple robots
to multiple target locations. The objective is to visit all targets
and return to base within the fastest time. We use a clustering
and formation based approach to ensure robots remain within

a required distance at all times. It is guaranteed to avoid robot-
robot collisions, as well as collisions with static obstacles. We
compare the performance of our algorithm to a sequential-
auction based algorithm (Connected Nearest Neighbour [27]),
a GA based algorithm (Dual-GA [29]), and an integer linear
program for a single robot (MATLAB TSP solver [30]). The
performance is compared using MATLAB, and our algorithm
is verified on a real system.

In this paper, we formalise the problem in Section III.
We introduce our new algorithm in Section IV. Results from
MATLAB simulations are presented in Section V. Computation
time of the algorithm is analysed in Section VI. Verification
of these results were performed on real robots, discussed in
Section VII. We conclude the paper in Section VIII.

III. PROBLEM DEFINITION

Consider a set of robots R that start at positions S. These
robots must visit a set of targets T then return to their start
positions. They do so by moving in a path pr, which is the
robot position as a function of time. They are not allowed
to occupy the same position at the same time, nor may they
occupy the same position as a set of obstacles O. The robots
must also stay within range c of one another, which is assumed
to be given as part of the problem. To define the problem, we
first define some functions. The first function, δ1(), calculates
the time a path will take to traverse. δ2() returns the distance
between two paths as a function of time. α1() takes two paths,
and returns how many times the paths collide (same point at
the same time, within a specified tolerance). α2() takes a path
and a point, and returns the number of times the path moves
through that point (with a specified tolerance).

The non-linear program formulation for the mTSP is as
follows:

minimise:max
r∈R

δ1(pr) (1)

subject to:∑

r∈R
(α2(t, pr)) ≥ 1 ∀t ∈ T (2)

∑

r∈R
(α2(o, pr)) = 0 ∀o ∈ O (3)

α1(pr1 , pr2) = 0 ∀r1, r2 ∈ R, r1 6= r2 (4)
max(δ2(pr1 , pr2)) ≤ c ∀r1, r2 ∈ R, r1 6= r2 (5)

pr,start = sr ∀r ∈ R (6)
pr,end ∈ S ∀r ∈ R (7)

Objective (1) is to minimise the maximum path length, i.e.,
visit all targets in the fastest amount of time. Constraint (2)
specifies that all targets must be included in at least one robot’s
path. Robots may move through the target more than once
if desired. Constraint (3) specifies that no robot may move
through an obstacle. Constraint (4) specifies that no two robots
may be at the same point at the same time. Constraint (5)
specifies that all robots must be within a certain distance with
one another. If robots can act as relays then this constraint
could be relaxed to one that specifies all robots belong in the
same network. Constraint (6) specifies that each robot’s path

109

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

TABLE I: Average performance improvement using different
robot zone generation algorithms across maximum allowed
distances between them (5 to 50 m) and number of targets
(10 to 100). Measured relative to single-robot solutions (%).

Num Robots 2 3 4 5 6

K-means 6.9 15.0 17.0 17.8 18.2
Grid-based 6.4 12.4 14.4 15.4 15.9
Hierarchical 8.9 12.7 13.5 13.8 13.8

must begin at the robot’s start position. Constraint (7) specifies
that each robot’s path must end at a robot’s start position, not
necessarily the same one that they started at.

We consider a robot that moves at a constant speed, is able
to stop, and can turn on the spot. This representation is also
valid if the distance between targets is large relative to the
robots’ turning circles.

IV. ALGORITHM

Firstly, we define a circle called the robot zone. The robot
zone has diameter equal to the maximum allowed distance
between the robots. If all robots are within the robot zone,
they are guaranteed to be within range of one another.

Our formation-routing algorithm can be briefly summarised
as a series of steps:
• Create robot zones that encapsulate all robot and target

locations
• Create a single path through all robot zones
• For each robot zone:

– Move robots through all targets within the zone
(intra-zone)

– Move robots in formation to the next zone (inter-
zone)

Examples of robot zones can be seen in Figures 1, 2, 3
and 4. A number of methods can be used for generating
robot zones, including K-means clustering [31], agglomerative
hierarchical clustering [32], and grid-based set cover [33]. The
algorithms are listed in Algorithms 1, 2, and 3, respectively.
An average comparison of multi-robot performance is shown
in Table I. We make use of K-means clustering, as it produced
better results.

Once robot zones have been generated, we plan a path
through the centre of each zone, referred to as the robot zone
path. This is a single path, so it is an example of the Travelling
Salesman Problem (TSP). The TSP has been researched for
many years [34], so we do not repeat the details here. We
represent the TSP as a integer linear program and solve it in
MATLAB to generate optimal robot zone paths [30], examples
of which are shown in Figures 1, 3, and 4.

At first, all robots are located within the starting robot
zone. They must move through all target locations within the
zone and end in a specified formation, ready for inter-zone
movement. The robots must remain within the robot zone so
that their distance constraint is guaranteed. If the robots move
in a straight line between targets, they are guaranteed to remain
within the robot zone. The intra-zones allocation problem is
therefore a problem formulation identical to Equations (1)

Algorithm 1 K-means Clustering

1: // Clusters move to encapsulate as many targets as
2: // possible.
3: procedure
4: n← size(T) . num targets
5: m← 0 . num clusters
6: a← 0 . num targets in clusters
7: while a < n do
8: m← m+ 1
9: for attempt ∈ {1, . . . , 100} do

10: KLi = (rand,rand) ∀i = {1, . . . ,m}
11: for iteration ∈ {1, . . . , 10} do
12: a← 0
13: Ki ← {} ∀i = {1, . . . ,m}
14: for all t ∈ T do
15: k = argmin

∀i∈{1,...,m}
(dist(KLi, TLt))

16: Kk ← Kk + {t}
17: if dist(KLk, TLt) < dmax then
18: a← a+ 1

19: if a = n then
20: return
21: Li = mean(Ki) ∀i = {1, . . . ,m}

Algorithm 2 Agglomerative Hierarchical Clustering

1: // Clusters are placed on targets, and redundant
2: // clusters are removed.
3: procedure
4: n← size(T) . num targets
5: m← size(T) . num clusters
6: . Cluster locations are on target locations
7: Ki ← Ti ∀i = {1, . . . , n}
8: KLi ← TLi ∀i = {1, . . . , n}
9: merged← true

10: while merged do
11: merged← false
12: K ← sort(K, size()) . descending
13: c← 0
14: while !merged do
15: k1 ← Kc

16: for all k2 ∈ K, k2 6= k1 do
17: Kmerge ← Kk1 ∪Kk2

18: if max
∀t∈Kmerge

(dist(KLk1, TLt)) <= dmax

then
19: Kk1 ← Kmerge

20: Kk2 ← {}
21: merged← true

22: c← c+ 1

110

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

Algorithm 3 Grid-based Set Cover Clustering

1: // A grid of clusters is created, those that encapsulate
2: // the most targets are picked.
3: procedure
4: n← size(T) . num targets
5: m← size(T) . num clusters
6: a← 0 . num targets in clusters
7: Ki ← {} ∀i ∈ {1, . . . ,m}
8: Pi ← {} ∀i ∈ {1, . . . , n}
9: k ← 0

10: for all x ∈ xrange do . set cluster locations
11: for all y ∈ yrange do
12: KLk ← (x, y)
13: k ← k + 1

14: for all i ∈ {1, . . . ,m} do . link clusters to targets
15: for all j ∈ {1, . . . , n} do
16: if dist(KLi, TLj) <= dmax then
17: Ki ← Ki + {j}
18: Pj ← Pj + {i}
19: Kfinal ← {}
20: while a < n do . pick cluster with most targets
21: k ← argmax

∀i∈{1,...,m}
(size(Ki))

22: Kfinal ← Kfinal + {k} . lock-in selection
23: for all j ∈ Kk do . targets in this cluster
24: for all i ∈ Pj do . clusters in range
25: Ki ← Ki − {j} . remove this target
26: a← a+ size(Pj)
27: Pj ← {}

through (7), except without the inter-robot distance constraint
(5), and with different end positions.

To solve this problem, we use an iterative process known
as a sequential single-item auction. Targets are sold to the
robots using an auction process. Robots submit bids equal to
the total path distance if they were to include a given target in
their path [5]. An auctioneer then calculates the best bid, and
allocates the target to the winner. Traditionally, the best bid
is the lowest one, but our previous work has shown that it is
better to use the least contested bid for the fastest completion
objective [35]. Robots are not allowed to bid on targets that
result in paths intersecting. If paths initially intersect, their
tails are swapped. This auction process is given in Algorithm
4. Any other task allocation process could also be used, as
this does not need to meet distance constraints.

Once all targets within a robot zone are complete, we move
the robots between robot zones while maintaining the distance
between them. We do this by locking robots in formation. A
robot will wait in its formation location until all robots have
assembled. They will then move together to the next robot
zone, as can be seen in Figure 2. We assume they are able to
maintain formation using a basic formation control algorithm
[36].

There are a couple of points of note here. Firstly, robots do
not rotate their formation once it has been fixed (otherwise,
robots will be required to move at different speeds). They

Algorithm 4 Completing targets within a robot zone

1: procedure SEQUENTIAL SINGLE-ITEM AUCTION
2: n← size(T) . num targets
3: A← T . to be auctioned
4: pr ← (sr, er) ∀r ∈ R . path start and end
5: p← checkForCollisionsAndSwap(p)
6: for {1, . . . , n} do
7: for all t ∈ A do
8: // Calculate new paths if target is sold
9: for all r ∈ R do

10: pnr ← addTargetToPath(pr, t)
11: bidr ← calculateCost(pnr)
12: if checkForCollisions(pn) then
13: bidr ←∞
14: // Calculate the least contested bid
15: rn1 ← argmin

∀r∈R
(bidr)

16: rn2 ← argmin
∀r∈R,r 6=r1

(bidr)

17: lcbt ← bidr2 − bidr1
18: // Store the best robot and path
19: rnt ← r1
20: pnt ← pnr1
21: // Choose the winner, update the path
22: twin ← argmax

∀t∈T
(lcbt)

23: rwin ← rntwin

24: prwin
← pntwin

25: A← {A} − {t}
26: // We insert the target into the path
27: procedure ADDTARGETTOPATH(p,t)
28: m← size(p)
29: cmin ← inf
30: pnmin ← {}
31: for i = {1, . . . ,m} do
32: // Add target t to path p at index i
33: pn← insertIntoPath(p,t,i)
34: c← calculateCost(pn)
35: if c < cmin then
36: cmin ← c
37: pnmin ← pn

38: return pnmin
39: // We swap path tails if they collide
40: procedure CHECKFORCOLLISIONS(p)
41: for r1 ∈ R do
42: p1len ← size(pr1)
43: for i = {1, . . . , p1len} do
44: seg1 ← pr1,i to i+1

45: for r2 ∈ R do
46: p2len ← size(pr2)
47: for j = {1, . . . , p2len} do
48: seg2 ← pr2,j to j+1

49: if checkCollision(seg1, seg2) then
50: p← swapTails(pr1, pr2, i+1, j+

1)

111

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

a)

Targets
Robot zones
Robot zone path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

b)

Targets
Robot zones
Start locations
End locations
Robot 1 path
Robot 2 path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

c)

Targets
Robot zones
Start locations
End locations
Robot 1 path
Robot 2 path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

d)

Targets
Robot zones
Start locations
End locations
Robot 1 path
Robot 2 path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

e)

Targets
Robot zones
Start locations
End locations
Robot 1 path
Robot 2 path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

f)

Targets
Robot zones
Start locations
End locations
Robot 1 path
Robot 2 path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

g)

Targets
Robot zones
Start locations
End locations
Robot 1 path
Robot 2 path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

h)

Targets
Robot zones
Start locations
End locations
Robot 1 path
Robot 2 path

-10 0 10 20 30 40 50 60 70

X (m)

-10

0

10

20

30

40

50

60

70

Y
 (

m
)

i)

Targets
Robot 1 path
Robot 2 path

Fig. 1: An example problem being solved. Two robots begin in formation near (0,0), and must visit all targets while staying
within required range of one another. a) Targets are clustered into robot zones with diameters equal to the maximum allowed
distance between robots. A path through these zones is generated. b-h) Robots complete targets within zones, then wait at
locations marked by x’s until formation is restored. Robots then move between robot zones in formation. i) The final path plan
for the two robots.

112

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

Start locations

Robot zones

Robot zone path

End locations

Fig. 2: The inter-robot zone process. When robots have com-
pleted all targets within a robot zone, they establish and hold
a formation from one robot zone to another. The path they
follow matches the robot zone path.

therefore produce the formation required for the next robot
zone. An example of this is shown in Figure 2, where the
robots pre-rotate the formation to accommodate the rotation of
the robot zone path. Secondly, the robots follow an identical
path as the robot zone path, ending once all robots have entered
the next robot zone.

A step-by-step example of the routes can be seen in Figure
1. Note that some solutions have paths that cross over one
another. Collisions will not occur, because the crossing paths
happen at different time segments. If we consider the example
shown in Figure 1, a series of paths that do not cross may look
like they cross if we do not consider time. Even if a robot were
to drive faster or slower than planned, it will be forced to wait
until formation is restored before moving onwards.

A. Static Obstacles

In addition to planning paths that prevent robots colliding
with one another, our method supports avoidance of static
obstacles. In an obstacle-free environment such as shown in
Figure 3, movement between vertices is done with a straight
line. In environments with obstacles, such as in Figure 4,
straight lines could lead to robots crashing into the obstacles.
Instead, we perform the following alterations to allow for
obstacle avoidance.

We separate obstacles into two categories: those that are
small enough for robots to stay in range while on opposite
sides (small), and those that are too large for this (large). For
the large obstacles, we ensure robots stay within range by
forcing all robots to go around them the same way. This is
done by altering the path between robot zones. We inflate
the large obstacles by the required inter-robot distance, and
plan a robot zone path around these inflated obstacles using
MATLAB’s probabilistic roadmap (although any path planner
could be used, such as A* [37]).

For the small obstacles, robot zones are placed so that small
obstacles are located entirely within them (i.e. not touching the

edge of a robot zone). We then plan paths around the obstacles
during the intra-zone phase.

The updated algorithm is as follows:
• Separate obstacles into small and large obstacles
• Inflate the large obstacles by the required inter-robot

distance
• Create robot zones that encapsulate all robot and target

locations, whose locations must not coincide with an
inflated large obstacle. The edges of a robot zone must
not overlap with a small obstacle.

• Create a single path (robot zone path) through all robot
zones, the path must not go through an inflated large
obstacle

• If there are any small obstacles within the required inter-
robot distance of the robot zone path, and if they are not
already located within a robot zone, add a new robot zone
to include it and create a new robot zone path

• For each robot zone:
– Move robots through all targets within the zone,

without intersecting with small obstacles (intra-zone)
– Move robots in formation to the next zone (inter-

zone)
This process can be seen in Figure 4. Firstly, robot zones

are selected to contain all targets and small obstacles. A robot
zone path is generated, giving sufficient space between the
path and the large obstacles. The final solution for one and
two robots are given.

In short, robots avoid large obstacles because they follow the
robot zone path between zones. Robots avoid small obstacles
using path planning within a zone.

For robot zone clustering with obstacles, we make use of
grid-based set cover clustering (Algorithm 3) for robot zone
selection (instead of K-means used earlier). It can quickly find
a valid set of robot zones, or return that none could be found
that meet all the criteria, whereas the K-means clustering
algorithm will loop infinitely if it is unable to find a valid
set.

V. RESULTS

In our analysis, we place the robots in formation around
(0,0) and randomly generate a number of targets within a
100 m x 100 m area. An Integer Linear Program (ILP) [30]
is used to solve for the single-robot solution (a standard
TSP), which acts as a solution benchmark. We then apply our
algorithm for comparison. We alter the maximum allowable
distance between robots (5 to 50 m), the number of targets
(10 to 100), and the number of robots (2 to 10). Each
configuration is repeated 100 times to generate an ensemble
average. The computation is performed using the University of
Adelaide’s high-performance computing cluster, Phoenix. The
robot formation was in an arc, evenly spaced between −45◦
and +45◦.

We can see the performance of the formation routing
algorithm in Figure 5. The first thing to notice is that it does
not always perform better than the single-robot solution. A
green line indicates this crossover, below which the single-
robot solution is better. In particular, it performs poorly when

113

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

-50 0 50 100

X (m)

0

20

40

60

80

100

Y
 (

m
)

a) Targets Clustered in Robot Zones

Targets
Robot zones
Robot zone path

-20 0 20 40 60 80 100

X (m)

0

10

20

30

40

50

60

70

80

90

100

Y
 (

m
)

b) One Robot Solution (benchmark)

Targets
Robot 1

-20 0 20 40 60 80 100

X (m)

0

10

20

30

40

50

60

70

80

90

100

Y
 (

m
)

c) Two Robot Solution (18.3% faster)

Targets
Robot 1
Robot 2

-20 0 20 40 60 80 100

X (m)

0

10

20

30

40

50

60

70

80

90

100

Y
 (

m
)

d) Three Robot Solution (22.0% faster)

Targets
Robot 1
Robot 2
Robot 3

-20 0 20 40 60 80 100

X (m)

0

10

20

30

40

50

60

70

80

90

100

Y
 (

m
)

e) Four Robot Solution (23.7% faster)

Targets
Robot 1
Robot 2
Robot 3
Robot 4

-20 0 20 40 60 80 100

X (m)

0

10

20

30

40

50

60

70

80

90

100

Y
 (

m
)

f) Five Robot Solution (24.5% faster)

Targets
Robot 1
Robot 2
Robot 3
Robot 4
Robot 5

Fig. 3: Optimisation without obstacles. Robots begin in formation near (0,0), and must visit all targets while staying within
required range of one another. a) Targets are clustered into robot zones with diameters equal to the maximum allowed distance
between robots. b) An optimal solution for a single robot is found using an Integer Linear Program (ILP). This is used as a
benchmark. c-f) Multi-robot solutions are generated through our formation-routing algorithm that guarantee no robot collisions
and all robots stay within a required range of one another.

0 20 30 40 60 80

X (m)

0

20

30

40

60

80

100

Y
 (

m
)

a) Targets Clustered in Robot Zones

Targets
Robot zones
Robot zone path

0 20 30 40 60 80

X (m)

0

20

30

40

60

80

100

Y
 (

m
)

b) One Robot Solution (benchmark)

Targets
Robot 1

0 20 30 40 60 80

X (m)

0

20

30

40

60

80

100

Y
 (

m
)

c) Two Robot Solution (4.6% faster))

Targets
Robot 1
Robot 2

Fig. 4: Optimisation with obstacles. Robots begin in formation near (0,0), and must visit all targets while staying within a
specified distance of one another. They cannot move through obstacles (black regions). a) Targets are clustered into robot zones
with diameters equal to maximum allowed distance. The path between robot zones avoids larger obstacles, and encapsulate
smaller ones. b) An optimal solution for a single robot is found using an Integer Linear Program (ILP). This is used as
a benchmark. c) A two-robot solution is generated through our formation-routing algorithm that avoids larger obstacles by
following the robot zone path, and avoids smaller obstacles using a path finding algorithm such as MATLAB’s probabilistic
roadmap. It guarantees no robot collisions with obstacles or each other and ensures robots stay within required distance of one
another.

114

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

Time improvement relative to
single-robot solutions for two robots

10 20 30 40 50 60 70 80 90 100

Number of Targets

5

10

20

30

40

50

M
ax

im
um

 D
is

ta
nc

e
B

et
w

ee
n

R
ob

ot
s

(m
)

-5

0

5

10

15

20

25

T
im

e
Im

pr
ov

em
en

t (
%

)

Approximate crossover

2 3 4 5 6 7 8 9 10

Number of Robots

-20

-10

0

10

20

30

40

50

60

70

T
im

e
Im

pr
ov

em
en

t (
%

)

Time improvement relative to
single-robot solutions for 100 targets

50 m between robots
30 m between robots
10 m between robots
5 m between robots

Fig. 5: The time required to reach all targets and return home
while staying within required distance using our algorithm.
Performance is measured relative to optimal solutions for a
single robot.

the required distance between robots is very low (less than 5 m
in a 100 m x 100 m area). A small inter-robot distance results
in very few targets per robot zone, which means only one
robot performs useful work. The other robots move solely to
stay in range. When this is the case, the single-robot solution
produces a more efficient path, resulting in faster completion.

Beyond this edge case, our algorithm performs significantly
better than a single robot. As we increase the number of
robots, the targets are completed much faster (in our tests,
up to 26% for two robots, 39% for three robots, 45% for five
robots). These improvements are biggest when the allowable
inter-robot distance is large, as there is more room within
robot zones for robots to reach targets in parallel. There
are diminishing returns as we saturate the system with more
robots, where the time gained from reaching targets in parallel
is close to the time spent keeping them within range of one
another.

We compare our formation routing algorithm to two other
algorithms in literature in Figure 6. We can see that formation

(a)

5 10 15 20 25 30 35 40 45 50

Max Distance Between Robots (m)

0

10

20

30

40

50

60

70

80

90

100

T
im

e
S

pe
nt

 E
xc

ee
di

ng
 A

llo
w

ed
 D

is
ta

nc
e

(%
)

-50

-40

-30

-20

-10

0

10

20

30

40

50

F
as

te
r

th
an

 S
in

gl
e-

R
ob

ot
 (

%
)

Time improvement relative to
single-robot solutions for 50 targets, 2 robots

Formation Routing
CNN
Dual-GA

(b)

5 10 15 20 25 30 35 40 45 50

Max Distance Between Robots (m)

0

10

20

30

40

50

60

70

80

90

100
T

im
e

S
pe

nt
 E

xc
ee

di
ng

 A
llo

w
ed

 D
is

ta
nc

e
(%

)

-50

-40

-30

-20

-10

0

10

20

30

40

50

F
as

te
r

th
an

 S
in

gl
e-

R
ob

ot
 (

%
)

Time improvement relative to
single-robot solutions for 80 targets, 3 robots

Formation Routing
CNN
Dual-GA

Fig. 6: The performance of formation routing algorithm, com-
pared to Connected Nearest Neighbour (CNN) [27], Dual-GA
[29], and a single-robot solution equivalent to the Travelling
Salesman Problem.

routing performs best for the more complex scenarios (80
targets, 3 robots), but is outperformed by Dual-GA for the
smaller problem (50 targets, 2 robots) with large inter-robot
distances (> 30 m in a 100 m x 100 m area).

To summarise the performance of the compared algorithms:
Single-Robot Solution: This is a standard Travelling Sales-

man Problem (TSP). This method produced the fastest paths
when the inter-robot distance is very low (5 m in 100 m x
100 m area), because the distance is not large enough to allow
targets to be visited in parallel.

Formation Routing: This method (introduced in this pa-
per), clusters targets and uses a combination of formation
and sequential auction to create paths. It produces the fastest
paths for small to medium inter-robot distances (10 m to
30 m). At larger communication distances, it is easier for other
techniques to find paths that do not spend time maintaining
formation. This method scales well for number of targets and
robots.

Genetic Algorithm (Dual-GA [29]): This method searches

115

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

101 102 103

Number of targets

10-1

100

101

102

103

104

C
om

pu
ta

tio
n

T
im

e
(s

)

Formation Routing Computation Time

Max distance = 5 m
Max distance = 10 m
Max distance = 40 m
Max distance = 80 m
Single-robot LKH

Fig. 7: The computation time for the formation routing algo-
rithm. Targets were randomly placed in a 100 m x 100 m
area, then solved by the formation routing algorithm. The
Lin-Kernhigan-Helsgaun algorithm [38] was used to generate
single-robot solutions as a benchmark.

for paths that meet the constraints. It produces the fastest paths
for large inter-robot distances (> 40 m) in small problems
(< 50 targets, < 4 robots). However, it may not find solutions
that meet the inter-robot distance constraint when distances are
small (< 30 m). When problems are large (> 50 targets, > 4
robots), the enormous number of possible solutions makes it
difficult to find fast paths.

Sequential Auction (CNN [27]): This method incremen-
tally builds paths. While this never produced the fastest paths,
it is able to be calculated more quickly than any other tested
algorithm.

VI. COMPUTATION TIME

The formation-routing algorithm was tested with thousands
of targets to determine its scalability. To accomodate this, we
did not use an exact TSP solver to form a single path through
robot zones, as it can take hours to solve beyond 100 tasks
[13]. We instead use LKH [38], an efficient implementation
of the Lin-Kernighan heuristic, with added improvements by
Helsgaun. It produces near-optimal results for TSP problems
while finding solutions orders of magnitude faster than exact
algorithms.

The computation time for a single-core single-node com-
puter in The University of Adelaide’s High Performance
Computing Cluster (Intel Xeon Gold 6148, 2.40 GHz, 4 GB
RAM) to perform the formation routing algorithm is shown in
Figure 7. The computation time is largely dependent on the
maximum allowed distance between robots. If the distance is
small, the majority of time is spent on finding a path between
all robot zones. If the distance is large, the majority of time is
spent performing auction allocation. The latter is slower, as the
collision check can take a long time when robot paths are long.
The formation routing algorithm is sometimes faster than the

-20 0 20 40 60 80 100

X (m)

0

10

20

30

40

50

60

70

80

90

100

Y
 (

m
)

Formation Routing (10000 targets)

Robot 1
Robot 2
Robot 3

Fig. 8: An example solution to a problem with ten thousand
targets. Maximum allowed distance between robots is 10 m. It
took 13.5 seconds to cluster into 217 robot zones, 5.9 seconds
to plan a path through the robot zones, then 278.4 seconds
to solve sequentially. If performed with full parallelism (217
parallel computers), this could be completed in 20.7 seconds.
In comparison, the Lin-Kernhigan-Helsgaun algorithm took 3
hours and 44 minutes.

LKH algorithm, which can allow large problems to be solved
efficiently, such as in Figure 8. A ten-thousand target problem
is solved within 5 minutes, with the possibility of reducing this
time to 21 seconds if parallelism is used. Once a path between
robot zones is formed, all movement within and between robot
zones can be performed in parallel. The smaller the maximum
distance is, the more zones will be used, which increases the
level of parallelism possible. It should also be noted that the
computation time of the formation routing algorithm is largely
independent of the number of robots.

VII. PHYSICAL IMPLEMENTATION

Our algorithm was implemented on Clearpath Jackals,
shown in Figure 9. These robots use the Robot Operating
System (ROS), and are equipped with an accelerometer,
gyroscope, magnetometer, wheel encoders, and GPS. They
use these sensors to localise themselves using an Extended
Kalman Filter (EKF), implemented in a popular ROS package
robot localization. The robots communicate using long-range
Ubuiquity Bullet radios, with a base station that can operate
as a wireless access point. The robots operate using a multi-
master extension called multimaster fkie, so they can operate
independently when apart.

We consider a scenario where one robot has suffered
hardware failure of their GPS. The environment is a large
open field, making other methods of localisation difficult (no
landmarks are available for SLAM loop-closure [39]), i.e. this
robots position error will increase over time. The goal is to
successfully visit all targets in the fastest time, even with
limited localisation capabilities.

116

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

Each Jackal is also equipped with four Pointgrey Grasshop-
per3 cameras mounted on each side, with a resolution of
2048x2048 pixels. The images of these cameras are then
processed to detect AprilTag fiducial markers [40], which
provide an estimate of the relative location of other robots.
We ran the cameras at 1 Hz so that the robots were not
overloaded with visual processing. With this relative location
information, we can improve position and orientation estimates
using Collaborative Localisation (CL) [41]. The robot with
GPS will watch and guide the robot without GPS.

We randomly placed 30 targets in a 50 m x 50 m area
on a grass field. Our objective is to visit all targets in the
fastest time, while ensuring the robots stay within 20 m of
one another.

Using our formation-based algorithm, we generated a series
of waypoints for the robots to drive to. A simple waypoint
following script was written for the robots, where robots drive
forward at constant speed (0.5 m/s), and rotate until they are
facing the next waypoint (up to 1 rad/s). When they need to
establish formation, they will wait for all robots to arrive at
the required location and report that they are in formation. The
robots send periodic information to one another at 1 Hz.

Firstly, we give robots access to GPS to compare real results
with our calculations. This can be seen in Figure 9. In part (b),
a single robot visits all targets in 487 s, where our calculations
predicted 489 s. In part (c), two robots visited all targets in
441 s, resulting in an improvement of 9.6%. Our calculations
were expecting a time of 426 s, and an improvement of 12.8%.
The discrepancy can be due to the extra time the robots spent
waiting for formation to be established, where a 2 s delay
was included to ensure both robots were in agreement that a
formation had been formed. Excluding this, the robots would
have visited all targets in 423 s, resulting in an improvement
of 13.1%.

These experimental results closely match our calculations,
with a difference of 0.6%. The real robots completed all
tasks slightly faster than what our calculations predicted, even
without driving in perfectly straight lines (due to GPS noise).
This is because the robots consider a target as visited when
they are within 1 m of it, so their paths are slightly shorter.

For the experiment shown in Figure 10, we give only one
robot access to GPS, so CL is required to accurately localise
both robots. Visual detections occur best when robots are
within 20 m of one another, so the robots must remain within
this distance during operation.

In part (a), the robot without GPS operates purely using
dead-reckoning (integrating velocity), and eventually loses its
bearing due to wheel slippage on the grass, resulting in many
of the targets being missed. In part (b), inter-robot detections
are used to vastly improve the localisation of the robot without
GPS. We found that inter-robot detections were particularly
effective when the observing robot takes the shorter path, as
camera detections were most accurate when the observing
robot was stopped and waiting for the other robot to establish
formation. Part (c) shows that the robots always stay within
their 20 m distance limit.

This scenario is an example of where inter-robot distance
constraints are fundamental for successful task completion,

(a) Robots

(b) One Robot Solution (benchmark)

Robot
Targets

(c) Two Robot Solution (9.6% faster)

Robot 1
Robot 2
Targets

Fig. 9: The objective is for robots to visit all target locations
and return to the start in the fastest time. a) The robots used in
the experiment. b) A single robot visited all targets in 487 s.
c) Two robots visited all targets in 441 s using our formation-
routing algorithm.

117

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 11

(a) Singular Localisation

Robot with GPS
Robot without GPS
Targets

(b) Collaborative Localisation

Robot with GPS
Robot without GPS
Targets

(c) Distance between robots. Must be < 20 m.

0 50 100 150 200 250 300 350 400

Time (s)

0

5

10

15

D
is

ta
nc

e
(m

)

Distance between robots
Target is visited
Robots in formation

Fig. 10: The objective is for robots to visit all target locations
and return to the start in the fastest time. One robot has
GPS, while the other does not. Our formation-based routing
algorithm was used to generate paths that stay within 20 m of
one another, so that collaborative localisation can be used. a)
Without GPS, one of the robots drifts. b) Inter-robot detections
allow both robots to visit their targets. c) The distance between
the robots is within 20 m at all times.

and illustrates how the formation-based routing algorithm
can be used to generate robot routes that meet the distance
constraints.

VIII. CONCLUSION

We have developed a formation-based routing algorithm
that ensures a number of targets are visited by robots, while
constraining that the robots do not exceed a given distance
from one another. This algorithm is more scalable than ex-
isting methods, while offering stronger distance guarantees in
the presence of static obstacles. Calculations closely match
the results from a real robot trial, and illustrate how this
algorithm can be applied to systems where multiple vehicles
share sensory information. It could equally be applied to
systems where vehicles must maintain communication with
one another, allowing them to immediately respond to new
information and hardware failure.

ACKNOWLEDGMENT

This research was supported by the Phoenix High Per-
formance Computing service at the University of Adelaide,
an Australian Government Research Training Program (RTP)
Scholarship, and by the Commonwealth of Australia (rep-
resented by the Defence Science and Technology Group)
through a Defence Science Partnerships agreement.

REFERENCES

[1] G. Daugherty, S. Reveliotis, and G. Mohler, “Optimized multiagent rout-
ing for a class of guidepath-based transport systems,” IEEE Transactions
on Automation Science and Engineering, 2018.

[2] K. Woiceshyn, Z. Kashino, G. Nejat, and B. Benhabib, “Vehicle routing
for resource management in time-phased deployment of sensor network-
s,” IEEE Transactions on Automation Science and Engineering, no. 99,
pp. 1–13, 2018.

[3] D. Stavrou, S. Timotheou, C. G. Panayiotou, and M. M. Polycarpou,
“Optimizing container loading with autonomous robots,” IEEE Trans-
actions on Automation Science and Engineering, vol. 15, no. 2, pp.
717–731, 2018.

[4] D. Spensieri, J. S. Carlson, F. Ekstedt, and R. Bohlin, “An iterative ap-
proach for collision free routing and scheduling in multirobot stations,”
IEEE Transactions on Automation science and Engineering, vol. 13,
no. 2, pp. 950–962, 2016.

[5] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. J.
Kleywegt, S. Koenig, C. A. Tovey, A. Meyerson, and S. Jain, “Auction-
based multi-robot routing,” in Robotics: Science and Systems, vol. 5.
Rome, Italy, 2005, Conference Proceedings, pp. 343–350.

[6] E. Schneider, O. Balas, A. T. Ozgelen, E. I. Sklar, and S. Parsons,
“Evaluating auction-based task allocation in multi-robot teams,” in
AAMAS Workshop: ARMS, 2014, Conference Proceedings.

[7] G. P. Das, T. M. McGinnity, S. A. Coleman, and L. Behera, “A dis-
tributed task allocation algorithm for a multi-robot system in healthcare
facilities,” Journal of Intelligent & Robotic Systems, vol. 80, no. 1, pp.
33–58, 2015.

[8] H. Nazif and L. S. Lee, “Optimised crossover genetic algorithm for
capacitated vehicle routing problem,” Applied Mathematical Modelling,
vol. 36, no. 5, pp. 2110–2117, 2012.

[9] L. P. Behnck, D. Doering, C. E. Pereira, and A. Rettberg, “A modi-
fied simulated annealing algorithm for SUAVs path planning,” IFAC-
PapersOnLine, vol. 48, no. 10, pp. 63–68, 2015.

[10] W. Wu, Y. Tian, and T. Jin, “A label based ant colony algorithm
for heterogeneous vehicle routing with mixed backhaul,” Applied Soft
Computing, vol. 47, pp. 224–234, 2016.

[11] J. W. Escobar, R. Linfati, P. Toth, and M. G. Baldoquin, “A hybrid
granular tabu search algorithm for the multi-depot vehicle routing
problem,” Journal of Heuristics, vol. 20, no. 5, pp. 483–509, 2014.

[12] H. A. Taha, Integer programming: theory, applications, and computa-
tions. Academic Press, 2014.

118

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

[13] K. Sundar and S. Rathinam, “Algorithms for heterogeneous, multiple
depot, multiple unmanned vehicle path planning problems,” Journal of
Intelligent & Robotic Systems, vol. 88, pp. 513–526, 2016.

[14] M. Fink, G. Desaulniers, M. Frey, F. Kiermaier, R. Kolisch, and
F. Soumis, “Column generation for vehicle routing problems with
multiple synchronization constraints,” European Journal of Operational
Research, vol. 272, pp. 699–711, 2018.

[15] G. D’Urso, S. L. Smith, R. Mettu, T. Oksanen, and R. Fitch, “Multi-
vehicle refill scheduling with queueing,” Computers and Electronics in
Agriculture, vol. 144, pp. 44–57, 2018.

[16] N. Agatz, P. Bouman, and M. Schmidt, “Optimization approaches for the
traveling salesman problem with drone,” Transportation Science, vol. 52,
pp. 965–981, 2018.

[17] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle
routing problem: State of the art classification and review,” Computers
& Industrial Engineering, vol. 99, pp. 300–313, 2016.

[18] H. Li, F. Nashashibi, and M. Yang, “Split covariance intersection filter:
Theory and its application to vehicle localization,” IEEE Transactions
on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1860–1871,
2013.

[19] O. De Silva, G. K. Mann, and R. G. Gosine, “Efficient distributed multi-
robot localization: A target tracking inspired design,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, Conference Proceedings, pp. 434–439.

[20] Y. Yan and Y. Mostofi, “Robotic router formation in realistic commu-
nication environments,” IEEE Transactions on Robotics, vol. 28, no. 4,
pp. 810–827, 2012.

[21] Y. Pei, M. W. Mutka, and N. Xi, “Connectivity and bandwidth-aware re-
altime exploration in mobile robot networks,” Wireless Communications
and Mobile Computing, vol. 13, no. 9, pp. 847–863, 2013.

[22] V. Spirin, S. Cameron, and J. De Hoog, “Time preference for information
in multi-agent exploration with limited communication,” in Conference
Towards Autonomous Robotic Systems. Springer, 2013, Conference
Proceedings, pp. 34–45.

[23] J. Banfi, A. Q. Li, N. Basilico, and F. Amigoni, “Communication-
constrained multirobot exploration: Short taxonomy and comparative
results,” in Proceedings of the IROS workshop on on-line decision-
making in multi-robot coordination (DEMUR2015), 2015, Conference
Proceedings, pp. 1–8.

[24] J. Stephan, J. Fink, V. Kumar, and A. Ribeiro, “Concurrent control of
mobility and communication in multirobot systems,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1248–1254, 2017.

[25] Y. Kantaros and M. M. Zavlanos, “Global planning for multi-robot
communication networks in complex environments,” IEEE Transactions
on Robotics, vol. 32, no. 5, pp. 1045–1061, 2016.

[26] S. G. Manyam, S. Rathinam, S. Darbha, D. Casbeer, Y. Cao, and
P. Chandler, “GPS denied UAV routing with communication constraints,”
Journal of Intelligent & Robotic Systems, vol. 84, no. 1-4, pp. 691–703,
2016.

[27] Y. Wang and C. Hu, “Moving as a whole: multirobot traveling problem
constrained by connectivity,” Turkish Journal of Electrical Engineering
& Computer Sciences, vol. 23, no. 3, pp. 769–788, 2015.

[28] G. Dhein, A. F. K. Neto, and O. C. B. de Araújo, “The multiple traveling
salesman problem with backup coverage,” Electronic Notes in Discrete
Mathematics, vol. 66, pp. 135–142, 2018.

[29] N. Sullivan, S. Grainger, and B. Cazzolato, “A dual genetic algorithm for
multi-robot routing with network connectivity and energy efficiency,” in
Control, Automation, Robotics and Vision (ICARCV) 2018. Proceedings.
2018 15th International Conference on. IEEE, 2018, Conference
Proceedings.

[30] MathWorks, “Traveling salesman problem: Solver-based,” 2018,
accessed: 2018-07-01. [Online]. Available: http://au.mathworks.com/
help/optim/ug/travelling-salesman-problem.html

[31] M. Elango, S. Nachiappan, and M. K. Tiwari, “Balancing task allocation
in multi-robot systems using K-means clustering and auction based
mechanisms,” Expert Systems with Applications, vol. 38, no. 6, pp.
6486–6491, 2011.

[32] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 86–97, 2012.

[33] M. Stolpe and A. Bechmann, “A greedy algorithm for a special class of
geometric set covering problems,” Departmen of Wind Energy Report,
2012.

[34] G. Laporte, “The traveling salesman problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, no. 2, pp. 231–247, 1992.

[35] N. Sullivan, S. Grainger, and B. Cazzolato, “Sequential single-item
auction improvements for heterogeneous multi-robot routing,” Submitted
to Journal of Robots and Autonomous Systems, Submitted.

[36] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[37] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, Path planning
and trajectory planning algorithms: A general overview. Springer,
2015, book section 1, pp. 3–27.

[38] T. Renato, K. Helsgaun, and D. Whitley, “Efficient recombination in the
lin-kernighan-helsgaun traveling salesman heuristic,” in Parallel Prob-
lem Solving from Nature, 2018 International Conference on. Springer,
2018, Conference Proceedings, pp. 95–107.

[39] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[40] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial de-
tection,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE, 2016, Conference Proceedings,
pp. 4193–4198.

[41] N. Sullivan, S. Grainger, and B. Cazzolato, “Analysis of cooperative
localisation performance under varying sensor qualities and communi-
cation rates,” Robotics and Autonomous Systems, 2018.

Nick Sullivan Nick Sullivan received his bachelor
degrees in mechatronics engineering and computer
science from the University of Adelaide, Australia,
in 2016. He is currently working toward the Ph.D.
degree in robotics at the University of Adelaide. His
research interests include multi-robot task allocation,
unmanned ground vehicles, and machine learning.

Steven Grainger Steven Grainger obtained his
Ph.D. on the control of electric drives from Glasgow
Caledonian University, Scotland and holds B.E. de-
grees in computing and electronic engineering. He
is a lecturer in Control and Embedded Systems at
the University of Adelaides School of Mechanical
Engineering. His current research interests include
nanopositioning systems and autonomous vehicles.

Ben Cazzolato Ben Cazzolato received his B.E. in
mechanical engineering at the University of Ade-
laide, Australia, in 1990. At the same university,
he received his Ph.D. in the field of active control
for sound transmission in 1998. He is currently a
professor at the University of Adelaide, teaching and
researching in the fields of dynamics and control.
Current research interests include modelling of com-
plex electro-mechanical systems, control of unstable
vehicles, active control and nano-positioning.

119

Chapter 7

Summary and Conclusion

Multiple robots can complete tasks faster and more robustly than a single robot.

However, it is non-trivial to decide how robots should operate to complete tasks

quickly, energy efficiently, and robustly. Algorithms for this problem are differentiated

by the time it takes for them to allocate tasks, where fast allocations are best handled

by sequential single-item auctions, optimal allocations are provided by integer linear

programs, and a trade-off between the two are solved by metaheuristics.

In Chapter 3, adaptations to sequential single-item auctions have been provided,

improving their performance. These adaptations use game theory to resolve auctions,

resulting in reduced energy usage in heterogeneous systems, and reduced completion

time for both heterogeneous and homogeneous systems. This has clear practical

significance in that multi-robot systems are able to complete tasks with lower opera-

tional cost via reduced energy costs. It also raises questions about the application of

algorithms designed for heterogeneous systems. It was found that the new algorithm

designed to operate on heterogeneous systems also showed significant improvement

for homogeneous systems, because their different locations makes them temporarily

120

heterogeneous. Applying this knowledge could improve other fields such as collision

avoidance, formation control, and network routing.

In Chapter 4, support for robot tool changes has been developed for auctions and

genetic algorithms, which allow these techniques to directly solve the problem. They

have been empirically compared to an introduced transformation, which converts the

tool-swap problem into a standard allocation problem. Guidance and mathematical

formulation has been provided to illustrate when each technique performs best. The

practical significance is that systems with robots that use tools now have more algo-

rithms at their disposal, as well as guarantees on the solution quality. It was found

that the type of capabilities (specific to a single task or useful for many tasks) have

significant impact on the ease of solving the problem, with the former being easily

transformed while maintaining the optimal solution, and the latter being far more

difficult due to the number of new solutions. This prompts the need for further research

on task allocation involving general-purpose tools. In particular, overcoming the local

optima which limit heuristic and meta-heuristic algorithms.

Robots can improve their localisation capabilities by detecting one another in a

process called collaborative localisation (CL). This provides a robust mechanism to

help localise robots with broken sensors, and improve position estimates of groups of

robots without GPS. In Chapter 5, the properties that improve CL performance have

been analysed. It was found that yaw accuracy has a substantial effect, communication

rate can be detrimental if it is too slow or fast, and heterogeneous systems are greater

candidates for CL than homogeneous systems. These insights are useful for determin-

ing whether a given robotic system would be suitably improved by using CL, or how

to design a robotic system such that CL can be effective. This analysis was performed

using a standard CL algorithm, but it would be useful to perform similar analysis on

new algorithms that operate differently. In particular, it is encouraged that researchers

apply new CL algorithms on real systems to display both effectiveness and sensitivity.

121

To enable CL, it is necessary to consider inter-robot distance during task allocation.

While some algorithms existed in the literature, they were unable to guarantee perfor-

mance when applied to real systems. In Chapter 6, a new formation-based algorithm

was presented, which provides inter-robot distance guarantees even in the presence

of obstacles. It also scales far better with the number of robots and tasks than other

available algorithms. This was used on a real system running CL, where one robot

without GPS was able to be successfully localised thanks to another robot, and all tasks

were completed successfully. This algorithm is also useful in systems which need

robots to stay near each other to maintain network communication, or to collaborate

to quickly complete a complex task. This algorithm has its limitations, and future

research in this area is encouraged to help overcome them. In particular, research is

encouraged on decentralised and distributed planning, dynamic environments (inner

and outer control loops), 3D environments, and other motion models.

There are a number of open problems which would have considerable impact

on robotic task allocation research. Allocating tasks for the most energy efficient

completion is a linear problem, allowing researchers to draw on mathematical theory

to develop provably good (and sometimes optimal) solutions. Allocating tasks for the

fastest completion, however, is non-linear, and very little mathematical development is

available for this problem. Research in this area relies on empirical testing to compare

algorithms, and would benefit from any mathematical rigour that could be introduced.

Collaborative localisation research is in its infancy, and very few algorithms have been

implemented on real robots. The sensitivity of these algorithms to real world conditions

(lost messages, delays, non-Gaussian noise) have not been considered. In addition,

there has not been a comparison of the available algorithms, so it is unclear what their

strengths and weaknesses are. A platform for this purpose has been developed and

is described in Appendix A. Multiple metaheuristics are available for optimisation

problems, but it is unclear which one is most suited for task allocation. Comparison is

122

difficult, as there are a lot of options for representation, initialisation, selection, and

exploration/exploitation functions. Any empirical comparison between them would be

useful, albeit difficult to generalise. It would be very useful if one could explain why

one metaheueristic is more suitable for a given problem than another.

123

Appendix A

Multi-Robot Hardware Platform

The following conference paper details the creation of a robotic platform for collabora-

tive localisation. This platform was developed to experimentally validate collaborative

localisation algorithms. It is referenced in Chapter 6, where a task allocation algorithm

was developed for systems with cooperative localisation capabilities.

124

Statement of Authorship

Paper Title: An Outdoor Multi-Vehicle Platform for Collaborative Localisa-
tion Research

Status: Presented at the Australasian Conference on Robotics and Au-
tomation (ACRA 2018)

Details: Published in ACRA 2018 Proceedings, vol 20, 2018

Principal Author

Name: Nick Sullivan

Contribution
Details:

Programmed the robots to a working baseline state, where
they could be driven manually. Added the functionality of au-
tonomous waypoint following, camera calibration, marker de-
tection, network communication, and data storage. Performed
experiments. Post processed data to generate localisation esti-
mates. Parsed and analysed results. Prepared the manuscript and
generated all figures.

Contribution
Percentage (%):

60

Signature: Date: 17 Mar, 2019

125

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

1. the candidate’s stated contribution to the publication is accurate (as detailed
above);

2. permission is granted for the candidate to include the publication in the thesis;
and

3. the sum of all co-author contributions is equal to 100% less the candidates stated
contribution.

Name: Steven Grainger

Contribution
Details:

Supervised work development and edited manuscript.

Signature: Date: 15 Mar, 2019

Name: Ben Cazzolato

Contribution
Details:

Supervised work development and edited manuscript.

Signature: Date: 13 Mar, 2019

126

An Outdoor Multi-Vehicle Platform for Collaborative Localisation
Research

Nick Sullivan1∗, Glen Pearce2, Steven Grainger1, Ben Cazzolato1

1School of Mechanical Engineering, The University of Adelaide
2Defence Science and Technology Group

∗nicholas.sullivan@adelaide.edu.au

Abstract

Autonomous vehicles rely on GPS to determine
their location, but GPS may not always be
available. A number of methods are being re-
searched to localise vehicles in GPS-denied en-
vironments, such as collaborative localisation
(CL), where robots measure their position rel-
ative to one another. However, CL algorithms
are not often tested on real hardware. To ac-
commodate this, we have upgraded commercial
off-the-shelf Clearpath Jackals to have inter-
robot detection capabilities. We present the
hardware and software design of the vehicles,
and our work flow to transition from simula-
tions to live operation. We provide extensions
to the available Clearpath Jackal simulation (in
Gazebo), as well as contributions to Robot Op-
erating System (ROS) packages. Preliminary
results are presented for cases where a single
vehicle with access to GPS uses inter-robot de-
tections to localise other vehicles.

1 Introduction

Many industries are starting to use autonomous vehi-
cles, such as transportation, warehousing, and assisted
healthcare. As such, they are drawing significant re-
search attention. One essential component for successful
control of these vehicles is localisation. Vehicles must
have some idea of where they are within their environ-
ment in order to effectively navigate to where they need
to go. Multi-vehicle systems have the additional com-
plexity that vehicles must evade and coordinate with one
another. To perform localisation, outdoor vehicles typi-
cally rely on GPS availability or recognisable features for
Simultaneous Localisation and Mapping (SLAM), with
dead-reckoning being used to interpolate between read-
ings as necessary. However, these are not always avail-
able. In particular, GPS is not available in tunnels, ar-
eas covered in large trees or buildings, or in warzones.

Figure 1: The physical robots equipped with cameras
and fiducial markers for inter-robot detections, as well
as a number of on-board sensors for localisation.

SLAM approaches use recognisable landmarks to gener-
ate and localise from a map. Ideally, available landmarks
will be recognisable, precise, and invariant to rotation,
translation and scale [Fuentes-Pacheco et al., 2015]. It
is therefore a challenge to successfully localise robots in
unpredictable, GPS-degraded environments [Ma et al.,
2017].

One method for localising multiple vehicles is to use
Collaborative Localisation (CL), which involves the com-
munication of feature detections to improve the locali-
sation of the group. Key advantages of CL is its ability
to reduce dead-reckoning drift by averaging over a group
[Rekleitis et al., 2002], and using robots as features, per-
mitting the use of SLAM techniques when no other fea-
tures are available. It can also be used to improve local-
isation of robots with limited sensing by leveraging the
localisation of robots with superior sensing [Wanasinghe
et al., 2015]. It has been used to localise smart cars in
tunnels and urban canyons [Elazab et al., 2015], under-

127

water vehicles localising from a surface unit with GPS
[Allotta et al., 2014], and improved 3D mapping of large
buildings [Kurazume et al., 2016].

Both DST Group’s Advanced Vehicle Systems team
and the University of Adelaide are interested in develop-
ing and analysing multi-vehicle CL techniques to provide
superior localisation over long distances in challenging
environments. A first step in this endeavour is to pro-
vide simulated and real-life test beds to apply and test
new algorithms.

A number of experimental robot platforms exist, and
have been surveyed and categorised up to 2013 [Jimnez-
Gonzlez et al., 2013; Parker, 2008]. More recently, test-
beds have been developed for distributed monitoring of
underwater environments [Schill et al., 2018], welding
[Mendes et al., 2016], gait rehabilitation [Bayon et al.,
2016], and multi-vehicle control [Labrado et al., 2016].
Of particular interest is the Robotarium [Pickem et al.,
2016], which provides publicly available remote access
to several small indoor robots. This lowers the barrier
of entry for robotics research, allowing more people to
contribute to the global pool of knowledge. Many useful
tools would not exist if it were not for the sharing of soft-
ware, such as OpenCV [Bradski and Kaehler, 2000], the
Robot Operating System (ROS) [Quigley et al., 2009],
and Gazebo [Koenig and Howard, 2004]. Our test-bed
makes use of all these softwares, and we have contributed
our improvements to the ROS repositories.

This paper details the physical and software design of
our research platform. It includes the challenges that
were overcome, as well as preliminary results showing
the capabilities of the platform.

2 Applications

The primary objective of the presented test bed is
for prototyping and validating collaborative localisation
techniques. However, it will also be used for many other
research applications.

The test-bed can be used to validate control algo-
rithms where robots have limited vision angles, local-
isation inaccuracies, and inter-robot detection errors.
In particular, simulations often simulate errors as zero-
mean Gaussian noise. We would like to know if these
techniques still perform in real-world conditions. Ad-
ditionally, we are interested in control techniques that
improve CL performance, i.e., moving vehicles in a way
that increases the quantity and quality of inter-robot de-
tections.

CL relies on detection of nearby robots. While we have
elected to use visual detection providing both angle and
distance, many other techniques are available, such as
using acoustic signals [Allotta et al., 2014], radio signal
direction [Russell et al., 2017], or infra-red [Rashid et al.,
2015]. With accurate position information, we can test

the performance of inter-robot detection techniques and
produce more realistic error profiles for use in simula-
tions.

In real conditions, network connectivity may become
degraded. We wish to produce and analyse techniques
that can operate even when communication is restricted
or unavailable.

2.1 Objectives

A number of objectives have been designed for the test-
bed in order for it to be used for the desired applications.

• Enable a quick transition from simulation to real
robots.

• Measure localisation error by comparing vehicle po-
sition with centimetre accurate differential GPS (D-
GPS).

• Provide customisable access to information. Vehi-
cles may be given access to the D-GPS, a standard
GPS, or no GPS at all. They may or may not be
able to identify the ID of other vehicles during inter-
robot detection. Detected landmarks may or may
not have a known position.

• Provide independent operation, without reliance on
full connectivity between robots.

To achieve these, we have elected to use ROS, which
allows the same software to be used for simulation and
on the real robots. In particular, initial work is imple-
mented in Gazebo. We then collect live sensor data from
the real vehicles using rosbags (message logging in ROS),
and play back the data for simulation with real sensor
data. Finally, the software is uploaded to the robots to
operate in real-time on the real system.

3 Physical Design

The test-bed uses Clearpath Jackals [Clearpath, 2014],
which support ROS and provide a readily available Gaze-
bo plug-in for a single Jackal. Adaptations had to be
made for a multi-Jackal simulation, which are described
in Section 4. All components operate using ROS in both
the real robot and Gazebo simulation.

The flow diagram for the physical system is shown in
Figure 2. In the first stage, sensors are processed into a
usable form. The sensor data can optionally be logged to
develop algorithms in the lab using real data. When exe-
cuting on real robots, the experimental software will use
live sensor measurements to produce an output. In the
figure, we have an example CL algorithm, which commu-
nicates inter-robot detections to produce new pose esti-
mations. The output is then stored in a rosbag, which
is converted into CSV files for analysis.

128

Example Localisation
Setup

nmea_navsat_driver

nmea_navsat_driver

rosbag (optional)

NMEA Sentence

NavSatFix

GPS IMU

imu_filter_madgwick

Imu

Camera

pointgrey_camera_
driver

image_proc_debayer

image_proc_rectify

apriltags2_ros

WFOVImage

Image

Image

TagDetections

collaborative
localisation observer

TagDetections

Localisation data

Inter-robot
detections

collaborative
localisation receiver

Odometry

GPS, IMU

robot_localization

Odometry

bag_to_csv

MATLAB or R

CSV files

rosbag

Prep
Sensors

(run on
robots)

Analyse
(run from
bag files)

Execute
(run on

robots or
from bag

files)

Figure 2: The software flow for the vehicles, run in
the Robot Operating System (ROS). Sensors are pre-
processed into a usable form, then optionally logged in
a rosbag (not all are listed). The robots execute the
currently uploaded software, and store the results in a
rosbag. The results are then analysed using MATLAB.

GPS
Antenna

PointGrey
Grasshopper
Cameras

U-blox
Differential

GPS

AprilTags
Fiducial
Markers

Ubiquity
Bullet
Radio

Figure 3: The physical robot.

3.1 Sensing

Many of the sensors can be seen in Figure 3. The Jack-
als contain an IMU consisting of an accelerometer, gy-
roscope, and magnetometer. The IMU is calibrated to
calculate magnetic disturbances of the vehicle.

Each robot has four Pointgrey Grasshopper3 cameras
separated by 90◦. Their focal length was set to infini-
ty. These cameras have a maximum resolution of 2048
x 2048 pixels, with a maximum of 90 Hz. The cameras
were calibrated using the standard camera calibration n-
ode in ROS. By default, they alter their exposure based
on lighting conditions. We found that increasing the
exposure lessened the affects of different lighting condi-
tions, particularly shadows.

Each robot was also mounted with a large box con-
taining fiducial markers on each side. The markers are
AprilTags markers [Wang and Olson, 2016]. The robot-
s use the apriltags2 ros package to identify robots and
measure the distance and angle between the robots, as
well as the orientation of the observed robot. The de-
tection range of AprilTags was tested on a sunny day by
holding a marker and moving backwards until detections
stopped, then moving a step forward to get the range.
The average error distance errors are listed in Table 1.

The GPS and differential GPS share an antenna, with
the signals being split using a splitter cable. We do this

129

Table 1: Apriltags2 detection ranges in sunny weather.

Resolution (pix) Size (cm) Range (m) Error (%)

1280x1024 11.1 7.5 1.3
1280x1024 16.6 13.0 0.8
2048x2048 11.1 9.0 1.1
2048x2048 16.6 15.0 3.3

because the on-board GPS antenna has difficulty find-
ing signal after the Jackal has been mounted with other
components. The U-blox differential GPS receives posi-
tion correction information from a base station to pro-
duce centimetre level accuracy. These sensors output
three strings, providing position information and GP-
S fix quality, velocity information, and covariance esti-
mations. These strings are fed into ROS using the n-
mea navsat driver package. This driver originally used
covariance approximation that does not correctly repre-
sent correction signals e.g. centimetre accurate positions
were creating ROS messages with covariance values hun-
dreds of times larger than they should be. We made some
corrections to the driver and have merged our changes
into the maintained ROS repository.

3.2 Control

Each Jackal comes with a bluetooth connection to a
Playstation 4 controller, providing manual movemen-
t with a dead-mans switch. When no movement com-
mands are received the Jackal stops.

Alternatively, the vehicles can travel to GPS way-
points using robot localization’s navsat transform node.
The navsat transform node converts GPS coordinates
into map coordinates, which the robots move to using
a simple fixed-speed waypoint follower.

3.3 Networking

The robots communicate to one another using long U-
biquity bullet radios, with a base station that operates
as a wireless access point. For long-distance communica-
tions, they are capable of supporting point-to-point com-
munication and forwarding messages in a decentralised
network. A communication graph can be manually spec-
ified by blacklisting certain connections.

By default, ROS uses a single master to organise com-
munication between machines. This would produce a
reliance on connectivity between robots, which violates
our objective of testing decentralised algorithms. In-
stead, the robots use a multi-master ROS setup with
multimaster fkie, where topics are synchronised across
ROS masters. ROS masters are dynamically discovered,
and will only send messages that robots have announced
interest in receiving. In this setup, no synchronised ROS
nodes can have the same name, otherwise there will be
a conflict and cause one of the nodes to crash. As such,

Figure 4: A screenshot from the multi-Jackal simulation
in Gazebo. The robots can have cameras, LIDARs, and
fiducial markers mounted on them.

we uniquely namespace (i.e. prefixed with their ID) all
nodes that are involved with inter-robot communication.

Inter-robot detections provide the distance, angle, and
orientation of an observed robot’s marker frame relative
to an observing robots camera frame. For this informa-
tion to be used in localisation algorithms, it should be
between each robot’s centre of mass, known in ROS as
the robot’s base link. The inter-robot detection uncer-
tainty is manipulated using the pose cov ops package,
which uses the Mobile Robot Programming Toolkit (M-
RPT) [Claraco, 2008].

4 Simulation Design

For simulation, Gazebo is used [Koenig and Howard,
2015]. Simulation of a single Jackal in Gazebo was al-
ready available in ROS, but it could not be used to sim-
ulate multiple Jackals, due to topic and frame naming
collisions. We have developed new packages for simulat-
ing multiple Jackals that overcome these pitfalls. This
is publicly available on ROS Kinetic in the package mul-
ti jackal tutorials. The option to add a fiducial mark-
er box has also been made available. An image of the
simulation can be seen in Figure 4. The launching pro-
cess matches that of a single Jackal. It is separated into
control, navigation, and description nodes. A base com-
bines these components, and tutorials show how to use
the base for a variety of scenarios.

5 Localisation

The robots are able to detect their relative positions from
one another. This information can be used to improve
localisation of the group. To localise, we use an Extend-
ed Kalman Filter (EKF). In particular, we make use of
the package robot localization, which provides an EKF in
ROS.

At time k, each robot stores a state estimate x̂k|k and a
state covariance Pk|k, which contain the estimated pose

130

and velocity, as well as the uncertainty of these estima-
tions. The EKF performs two phases; prediction and
update. The prediction phase calculates the robot state
based on its prior state:

x̂k|k−1 = Fkx̂k−1|k−1 (1)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (2)

The update phase uses sensor measurements zk with co-
variance Rk and observation matrix Hk to improve the
state:

Innovation: ỹk = zk −Hkx̂k|k−1 (3)

Innovation Covariance: Sk = HkPk|k−1H
T
k + Rk (4)

Kalman Gain: Kk = Pk|k−1H
T
k S
−1
k (5)

Updated State: x̂k|k = x̂k|k−1 + Kkỹk (6)

Updated Covariance: Pk|k = (I−KkHk)Pk|k−1
(7)

The EKF state contains the robot’s pose (x, y, ψ)
relative to a static origin, and its velocity on the body-
centred frame (x is forward, y is left). The filter is dis-
crete, and uses the time between iterations dt. For short-
hand, we let cψ = cos(ψ) and sψ = sin(ψ).

x̂ =




posx
posy
posψ
velx
vely
velψ




Q =




0.05 0 0 0 0 0
0 0.05 0 0 0 0
0 0 0.06 0 0 0
0 0 0 0.025 0 0
0 0 0 0 0.025 0
0 0 0 0 0 0.02




F =




1 0 dt(−velxsψ − velycψ) dt(cψ) dt(−sψ) 0
0 1 dt(−velysψ + velxcψ) dt(sψ) dt(cψ) 0
0 0 1 0 0 dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




The matrices used in robot localization include accelera-
tions, pitch, roll, and height. These are not utilised in
our implementation so have been omitted here.

Three jackals were driven in a rectangle on a sports
pitch, as shown in Figure 5, with an objective to work
out their location. One robot had access to GPS for the
entire trial, and the two others were denied GPS after
convergence. Two methods were compared. Singular

(a) Singular Localisation

Robot 1 (with GPS)
Robot 2
Robot 3

(b) Collaborative Localisation

Robot 1 (with GPS)
Robot 2
Robot 3

Figure 5: Three robots were driven along the same path,
in a rectangle. Two robots were denied access to GPS
during operation. a) The position estimates of the robot-
s using dead-reckoning from wheel encoders, gyroscope
and accelerometers. b) The position estimates of the
robots using all the sensor data from (a) as well as inter-
robot detections, where the single robot with GPS is able
to assist the other two robots.

131

localisation used encoders, gyroscope, and control input.
We can see that this leads to localisation drift over time.
Collaborative localisation also used encoders, gyroscope,
and control input, but with inter-robot measurements
where available. We can see that the robot with GPS is
able to correct the localisation drift of the other robots.

We have fused inter-robot measurements in a method
known as Naive Collaborative Localisation, because an
EKF treats all inputs as independent, and this is not the
case when robots use communicated information. When
one robot affects another robot’s location estimate, the
two are no longer completely independent, resulting in
the same source of information being fused more than
once in the EKF. While this can be somewhat account-
ed for by tuning communication rate and process noise
covariance [Sullivan et al., 2018a], this platform enables
us to compare the performance of collaborative locali-
sation algorithms that specifically deal with this prob-
lem, such as Covariance Intersection [De Silva et al.,
2015], Split Covariance Intersection [Li et al., 2013], the
Common Past-Invariant Ensemble Kalman Filter [Curn
et al., 2013], the Cubature Kalman Filter [Wanasinghe
et al., 2015], and Posterior Linearization Belief Propa-
gation [Garcia-Fernandez et al., 2018].

6 Vehicle Routing

Localisation is not the primary objective of a multi-robot
system. Rather, it is part of the means to complete cer-
tain tasks. It is therefore not practical to expect robots
to drive behind one another in order to maintain collab-
orative localisation. Instead, we wish to use routing al-
gorithms that aim to complete primary objectives (tasks
at given locations), while enabling collaborative locali-
sation. Such algorithms include market-based auction
[Wang and Hu, 2015], genetic algorithms [Dhein et al.,
2018; Sullivan et al., 2018b], and formation routing [Sul-
livan et al., 2018c]. Note that this section provides an
example on how the platform is being utilised for testing
routing algorithms. Further development and validation
of vehicle routing algorithms will be discussed in future
work.

We placed 30 targets in a 50 m x 50 m area, and ran a
formation routing algorithm to visit all target locations
while maintaining distance of under 20 m. Beyond 20 m,
robots receive fewer visual detections, which would pre-
vent the use of collaborative localisation. The formation
routing steps are as follows:

1. Group targets into circles of 20 m diameters using
K-means clustering

2. Order the circles using a Travelling Salesman Prob-
lem solver [MathWorks, 2018]

3. Within a circle, allocate targets using sequential
auction

(a) Singular Localisation

Robot with GPS
Robot without GPS
Targets

(b) Collaborative Localisation

Robot with GPS
Robot without GPS
Targets

Figure 6: The objective is for robots to visit all target
locations and return to the start in the fastest time. One
robot has GPS, while the other does not. a) Without
GPS, one of the robots drifts. b) Inter-robot detections
allow both robots to visit their targets.

132

4. Between circles, move in formation

5. Repeat steps 3 and 4 until vehicles are back to their
starting points

The resulting vehicle paths can be seen in Figure 6.
One robot is given access to its GPS, while the other
is not. The objective is for all targets to be visited by
a robot. If they both use their own sensing, the robot
without GPS is unable to properly move to each tar-
get location, as seen in Figure 6a. If the robot with
GPS shares position information using collaborative lo-
calisation, both robots are able to navigate to the target
locations, as seen in Figure 6b. The formation routing
technique ensures the robots stay within visual detection
distance, allowing CL to be used throughout the entire
trial.

7 Conclusion

The upgraded Clearpath Jackals provide a suitable re-
search platform to develop and test localisation algo-
rithms. It provides a means to transfer algorithms from
simulation to reality, with options to operate in a Gaze-
bo environment; a rosbag of real sensor data; and final-
ly live operation. We presented successful cases where
collaborative localisation has been used to localise vehi-
cles without GPS by leveraging information from those
that do. In the development process, contributions to
ROS GPS drivers have been made to support D-GPS,
and multi-Jackal simulations have been made available
in ROS. This platform will provide an important role in
verifying the performance of localisation algorithms, and
will help transition them from simulation to reality.

Acknowledgment

This research was supported by an Australian Govern-
ment Research Training Program (RTP) Scholarship,
and by the Commonwealth of Australia (represented by
the Defence Science and Technology Group) through a
Defence Science Partnerships agreement.

Special thanks to Anthony Perry and Daniel Nesbitt
for their assistance in upgrading the Clearpath Jackals.

References

[Allotta et al., 2014] Allotta, B., Costanzi, R., Meli, E.,
Pugi, L., Ridolfi, A., and Vettori, G. (2014). Coop-
erative localization of a team of AUVs by a tetrahe-
dral configuration. Robotics and Autonomous System-
s, 62(8):1228–1237.

[Bayon et al., 2016] Bayon, C., Ramirez, O., Velasco,
M., Serrano, J., Lara, S. L., Martinez-Caballero, I.,
and Rocon, E. (2016). Pilot study of a novel robotic
platform for gait rehabilitation in children with cere-
bral palsy. In Biomedical Robotics and Biomechatron-

ics (BioRob), 2016 6th IEEE International Confer-
ence on, pages 882–887. IEEE.

[Bradski and Kaehler, 2000] Bradski, G. and Kaehler,
A. (2000). OpenCV. Dr. Dobbs Journal of Software
Tools.

[Claraco, 2008] Claraco, J. L. B. (2008). Development
of scientific applications with the mobile robot pro-
gramming toolkit. The MRPT reference book. Ma-
chine Perception and Intelligent Robotics Laboratory,
University of Malaga, Malaga, Spain.

[Clearpath, 2014] Clearpath (2014). Jackal, unmanned
ground vehicle. [Online; accessed 16-April-2018].

[Curn et al., 2013] Curn, J., Marinescu, D., O’Hara, N.,
and Cahill, V. (2013). Data incest in cooperative lo-
calisation with the common past-invariant ensemble
Kalman filter. In 16th International Conference on
Information Fusion (FUSION), pages 68–76. IEEE.

[De Silva et al., 2015] De Silva, O., Mann, G. K., and
Gosine, R. G. (2015). Efficient distributed multi-robot
localization: A target tracking inspired design. In
2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 434–439. IEEE.

[Dhein et al., 2018] Dhein, G., Neto, A. F. K., and
de Araújo, O. C. B. (2018). The multiple traveling
salesman problem with backup coverage. Electronic
Notes in Discrete Mathematics, 66:135–142.

[Elazab et al., 2015] Elazab, M., Noureldin, A., and
Hassanein, H. S. (2015). Integrated cooperative lo-
calization for connected vehicles in urban canyon-
s. In 2015 IEEE Global Communications Conference
(GLOBECOM), pages 1–6. IEEE.

[Fuentes-Pacheco et al., 2015] Fuentes-Pacheco, J.,
Ruiz-Ascencio, J., and Rendón-Mancha, J. M. (2015).
Visual simultaneous localization and mapping: a
survey. Artificial Intelligence Review, 43(1):55–81.

[Garcia-Fernandez et al., 2018] Garcia-Fernandez,
A. F., Svensson, L., and Sarkka, S. (2018). Co-
operative localization using posterior linearization
belief propagation. IEEE Transactions on Vehicular
Technology, 67(1):832–836.

[Jimnez-Gonzlez et al., 2013] Jimnez-Gonzlez, A.,
Martinez-de Dios, J. R., and Ollero, A. (2013).
Testbeds for ubiquitous robotics: A survey. Robotics
and Autonomous Systems, 61(12):1487–1501.

[Koenig and Howard, 2004] Koenig, N. and Howard, A.
(2004). Design and use paradigms for gazebo, an open-
source multi-robot simulator. In Intelligent Robots
and Systems, 2004.(IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 3,
pages 2149–2154. IEEE.

133

[Koenig and Howard, 2015] Koenig, N. and Howard, A.
(2015). Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In Intelligen-
t Robots and Systems, 2004.(IROS 2004). Proceed-
ings. 2004 IEEE/RSJ International Conference on,
volume 3, pages 2149–2154. IEEE.

[Kurazume et al., 2016] Kurazume, R., Oshima, S., Na-
gakura, S., Jeong, Y., and Iwashita, Y. (2016). Au-
tomatic large-scale three dimensional modeling using
cooperative multiple robots. Computer Vision and
Image Understanding, 0:1–18.

[Labrado et al., 2016] Labrado, J. D., Erol, B. A., Or-
tiz, J., Benavidez, P., Jamshidi, M., and Champion,
B. (2016). Proposed testbed for the modeling and con-
trol of a system of autonomous vehicles. In System of
Systems Engineering Conference (SoSE), 2016 11th,
pages 1–6. IEEE.

[Li et al., 2013] Li, H., Nashashibi, F., and Yang, M.
(2013). Split covariance intersection filter: Theo-
ry and its application to vehicle localization. IEEE
Transactions on Intelligent Transportation Systems,
14(4):1860–1871.

[Ma et al., 2017] Ma, K., Schirru, M., Zahraee, A. H.,
Dwyer-Joyce, R., Boxall, J., Dodd, T. J., Collins, R.,
and Anderson, S. R. (2017). Pipeslam: Simultaneous
localisation and mapping in feature sparse water pipes
using the rao-blackwellised particle filter. In Advanced
Intelligent Mechatronics (AIM), 2017 IEEE Interna-
tional Conference on, pages 1459–1464. IEEE.

[MathWorks, 2018] MathWorks (2018). Traveling sales-
man problem: Solver-based. Accessed: 2018-07-01.

[Mendes et al., 2016] Mendes, N., Neto, P., Simao, M.,
Loureiro, A., and Pires, J. (2016). A novel friction stir
welding robotic platform: welding polymeric materi-
als. The International Journal of Advanced Manufac-
turing Technology, 85(1-4):37–46.

[Parker, 2008] Parker, L. E. (2008). Multiple mo-
bile robot systems, book section 40, pages 921–941.
Springer.

[Pickem et al., 2016] Pickem, D., Glotfelter, P., Wang,
L., Mote, M., Ames, A., Feron, E., and Egerstedt, M.
(2016). The robotarium: A remotely accessible swar-
m robotics research testbed. In Robotics and Automa-
tion (ICRA), 2017 IEEE International Conference on,
pages 1699–1706. IEEE.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey,
B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and
Ng, A. Y. (2009). ROS: an open-source robot oper-
ating system. In ICRA Workshop on Open Source
Software, volume 3, page 5.

[Rashid et al., 2015] Rashid, A. T., Frasca, M., Ali,
A. A., Rizzo, A., and Fortuna, L. (2015). Multi-robot
localization and orientation estimation using robotic
cluster matching algorithm. Robotics and Autonomous
Systems, 63:108–121.

[Rekleitis et al., 2002] Rekleitis, I. M., Dudek, G., and
Milios, E. E. (2002). Multi-robot cooperative local-
ization: a study of trade-offs between efficiency and
accuracy. In Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, volume 3,
pages 2690–2695. IEEE.

[Russell et al., 2017] Russell, J. S., Ye, M., Anderson,
B. D., Hmam, H., and Sarunic, P. (2017). Cooperative
localisation of a GPS-denied UAV in 3-dimensional
space using direction of arrival measurements. IFAC-
PapersOnLine, 50(1):8019–8024.

[Schill et al., 2018] Schill, F., Bahr, A., and Martinoli,
A. (2018). Vertex: A New Distributed Underwater
Robotic Platform for Environmental Monitoring, book
section 7, pages 679–693. Springer.

[Sullivan et al., 2018a] Sullivan, N., Grainger, S., and
Cazzolato, B. (2018a). Analysis of cooperative locali-
sation performance under varying sensor qualities and
communication rates. Journal of Robotics and Au-
tonomous Systems, 110:73–84.

[Sullivan et al., 2018b] Sullivan, N., Grainger, S., and
Cazzolato, B. (2018b). A dual genetic algorithm for
multi-robot routing with network connectivity and en-
ergy efficiency. In Control, Automation, Robotics and
Vision (ICARCV) 2018. Proceedings. 2018 15th In-
ternational Conference on. IEEE.

[Sullivan et al., 2018c] Sullivan, N., Grainger, S., and
Cazzolato, B. (2018c). Multirobot routing with con-
nectivity maintainence. Submitted to the European
Journal of Operational Research.

[Wanasinghe et al., 2015] Wanasinghe, T. R., Mann,
G. K., and Gosine, R. G. (2015). Distributed leader-
assistive localization method for a heterogeneous mul-
tirobotic system. IEEE Transactions on Automation
Science and Engineering, 12(3):795–809.

[Wang and Olson, 2016] Wang, J. and Olson, E. (2016).
Apriltag 2: Efficient and robust fiducial detection.
In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on, pages 4193–
4198. IEEE.

[Wang and Hu, 2015] Wang, Y. and Hu, C. (2015).
Moving as a whole: multirobot traveling problem con-
strained by connectivity. Turkish Journal of Electrical
Engineering & Computer Sciences, 23(3):769–788.

134

Appendix B

Task Allocation with Network

Connectivity

The following conference paper introduces a new algorithm that allocates tasks with

consideration of network connectivity between robots. A genetic algorithm is used to

search for solutions to the problem, then waypoints are iteratively added to improve

performance. This algorithm solves the same problem as the algorithm introduced in

Chapter 6, with an application of network connectivity instead of visual connectivity.

As discussed in that chapter, this algorithm performs better for small problem sizes,

but does not scale well. The uniqueness of this algorithm lies in its ability to provide a

range of solutions for two opposing objectives, leaving a decision-maker with choices

about what they consider a balance between the two objectives.

135

Statement of Authorship

Paper Title: A Dual Genetic Algorithm for Multi-Robot Routing with Net-
work Connectivity and Energy Efficiency

Status: Presented at the International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV 2018)

Details: Published in ICARCV 2018 Proceedings, vol 15, 2018

Principal Author

Name: Nick Sullivan

Contribution
Details:

Performed literature review on algorithms for allocating tasks
to robots while maintaining distance between the robots, sepa-
rating them by their consideration of multiple tasks, speed, and
connectivity guarantees. Implemented algorithms from litera-
ture, discovering the violation of connectivity when collision
avoidance is included. Developed a new algorithm that uses ge-
netic algorithms to provide guarantees even when obstacles are
included. Created tests to illustrate the performance of the new
algorithm relative to those in literature, then wrote the code for
these tests. Parsed and analysed results. Prepared the manuscript
and generated all figures.

Contribution
Percentage (%):

80

Signature: Date: 17 Mar, 2019

136

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

1. the candidate’s stated contribution to the publication is accurate (as detailed
above);

2. permission is granted for the candidate to include the publication in the thesis;
and

3. the sum of all co-author contributions is equal to 100% less the candidates stated
contribution.

Name: Steven Grainger

Contribution
Details:

Supervised work development and edited manuscript.

Signature: Date: 15 Mar, 2019

Name: Ben Cazzolato

Contribution
Details:

Supervised work development and edited manuscript.

Signature: Date: 13 Mar, 2019

137

A Dual Genetic Algorithm for Multi-Robot Routing with Network
Connectivity and Energy Efficiency

Nick Sullivan, Steven Grainger, Ben Cazzolato

Abstract— We provide a Dual-GA technique for solving
the Multiple Travelling Salesman Problem (mTSP) while con-
straining distance between robots. Other techniques primarily
solve for full network connectivity, with energy efficiency as
a secondary objective. Our technique makes no assumptions
about the desired balance between connectivity and energy
efficiency. Instead, it produces a range of solutions for the
decision-maker to select from. It uses NSGA-II for the primary
GA, with a secondary GA periodically adding waypoints for
greater connectivity. We introduce the Dual-GA and analyse
its performance compared to other algorithms.

I. INTRODUCTION

Multi-robot systems can provide greater performance over
single-robot systems through independent movement, redun-
dancy, and heterogeneity. They are also becoming increas-
ingly ubiquitous as the performance of robotic components
improve, and their costs decrease. But multi-robot systems
are more difficult to control, leading to significant research
attention in the areas of flocking, exploration, and routing.

Multi-robot routing is the selection of how robots should
move in order to complete desired tasks. It is also known as
the Multiple Travelling Salesman Problem (mTSP) and the
Multiple Depots Vehicle Routing Problem (MDVRP). The
majority of research in this area is focussed on three aspects
of these problems: completing a subset of tasks to maximise
a pay-off metric, completing tasks energy efficiently, and
completing tasks quickly. However, there is also a strong
desire to consider new objectives for these problems [1].

Optimal solutions are available for the energy efficiency
objective with the use of Mixed-Integer Linear Programs
(MILPs) [2], and fast heuristic methods can be used while
providing proven upper bounds [3].

The fast completion objective is non-linear, so proving
solution quality is much more difficult. Few algorithms
with tight mathematical guarantees are available for this
objective. Nevertheless, techniques such as sequential single-
item auctions and Genetic Algorithms (GAs) can provide
fast and reliable solutions. There has also been research in
solving multiple objectives for the mTSP. One of the most
common approaches for multi-objective problems is NSGA-
II [4], where solutions are sorted into Pareto fronts and
provide a set of possible solutions that a user can select
from.

A common assumption in these systems is that robots have
the ability to communicate with one another at all times.
While this is valid for some systems, it is not always the

School of Mechanical Engineering, The University of Adelaide, 5005,
Australia nicholas.sullivan@adelaide.edu.au

case for scenarios such as exploration, search and rescue,
and environmental monitoring. As such, many available al-
gorithms are not applicable to these cases. To overcome this,
connectivity can be considered during the solving process.

Some research has focussed on optimal placement of
robots to provide the best possible connectivity [5]. Another
metric is to consider bandwidth as well as connectivity for
streaming video while exploring [6]. Or the use of hybrid
control systems to combine the benefits of a globally-optimal
centralised system and a distributed system using inner and
outer control layers [7], [8]. However, these techniques do
not consider energy efficiency or completion time of multiple
tasks.

Another approach is to plan paths assuming that robots
can only communicate when they occupy the same space,
and so forms paths that are guaranteed to overlap when
looped infinitely [9]. Multi-robot exploration has also been
considered, with the requirement that robots need only be
connected when exploring new areas [10]. Tuning rules can
be used to adjust how much information can be collected
before reporting it back to a base station [11]. A compari-
son of four communication-based exploration techniques is
available with a short taxonomy of different communication-
constrained exploration [12].

Some heuristics consider energy efficiency as an objective,
attempting to complete tasks as energy efficiently as possible
while maintaining connectivity. One such heuristic is the
Connected Nearest Neighbour (CNN) [13], which alternates
between task allocation and connectivity maintenance phas-
es. A bounded solution has been found for a two-robot
problem where robots alternate movement on a small grid
[14]. All tasks can be completed within 9/2 of optimal
energy efficiency while maintaining connectivity, but under
the limiting conditions of a small grid with alternating
movements.

Thus far, state-of-the-art of connectivity-constrained mT-
SP has dealt with connectivity without consideration of
energy efficiency, or energy efficient approaches that have
best-effort connectivity. However, it may be desirable to
sacrifice connectivity to improve energy efficiency, or vice
versa. Our technique provides a range of solutions that
a decision-maker can then select from. In this paper we
consider a trade-off between energy efficiency and connec-
tivity. A decision-maker can then make an informed decision
about what they consider a desirable balance between these
objectives. We also show that our technique outperforms
other approaches when the aim is optimal connectivity, and
analyse the conditions for when this is the case.

138

II. PROBLEM STATEMENT

In the multiple Travelling Salesman Problem (mTSP),
there are a set of robots initially located at one or more
depots, and a set of tasks at different locations that must be
completed. Each robot will travel to the tasks allocated to it,
known as the robot’s tour. Our intent is to find allocations
that minimise a given objective. Typical objectives are to
minimise the total task completion time, which is done by
minimising the maximum robot tour (MiniMax), and to min-
imise the total energy usage, which is done by minimising
the sum of robot tours (MiniSum). When solving for these
objectives, the cost function to traverse an edge is constant.
The time that a robot takes travelling from one task to another
is not affected by the previous tasks it has completed, nor is it
affected by what the other robots are doing. However, when
considering connectivity between robots, this is no longer the
case. Robot path costs cannot be calculated independently,
and the physical movement that robots take between two
tasks now needs to be considered.

Let us consider how this affects solving scalability for
a single-robot mTSP (i.e. a TSP) with N tasks. There are
N choices for the first task, N − 1 choices for the second,
N − 2 for the third etc. resulting in N ! possible allocations.
If there are M options for how the robot travels between two
tasks, there are M options between tasks 1 and 2, M options
between tasks 2 and 3 etc. The number of possible allocations
becomes N !∗MN . Task-to-task paths are usually calculated
first and stored in a lookup table, resulting in a once off
cost of O(N2). Task-to-task paths that consider connectivity
must be calculated dynamically, so each allocation requires
traversing the path to calculate its cost. This results in a
final time of O(N ! ∗MN ∗ N), compared to the standard
TSP cost of O(N !). The value of M depends on how many
task-to-task paths we wish to consider, these paths could be
any number of different shapes, and go for any amount of
time. This is a phenomenally large increase to an already
NP-hard problem. As such, we instead only use the fastest
task-to-task paths to reduce the scaling to a more feasible
O(N ! ∗N).

A. Motivating Example
Consider a natural environment that is being researched,

where soil samples from different locations must be collected
regularly. Samples are collected from within a 10km by 10km
area, so robots are sent every week to autonomously collect
these samples. The robots can communicate via radio, but the
range is limited to 3km. There are mountains which block
robot movement and communication. The robots also have
a risk of breaking down during collection. The researchers
have two main aims for the sample collection robots:

• Energy efficient. Saving fuel saves money.
• Able to dynamically re-plan. In the event of a robot

failure, the remaining robots should detect this failure,
re-plan to collect the remaining soil samples, and report
the location of the broken robot when they return home.

It is also desirable for the robots to complete the collections
quickly, but we do not treat this as an objective.

TABLE I
OBJECTIVES.

Desire Objective Meaning

Energy efficient MiniSumTime Minimise the sum of all
travel times.

Fast completion MiniMaxTime Minimise the maximum
robot travel time.

Periodic
connectivity

MiniMaxNetGap Minimise the longest
time between full robot
connectivity.

III. OBJECTIVE FUNCTIONS

A number of objectives are explored, listed in Table
I. The traditional objectives, energy efficient completion
and fast completion, are referred to as MiniSumTime and
MiniMaxTime to avoid confusion with our new objective.

We consider a new objective designed for regular network
connectivity between robots. MiniMaxNetGap focuses on
regular check-ins between robots, so that if a robot fails,
the robots can re-plan accordingly.

Calculating SumTime and MaxTime for a given solution is
simple, and can be done quickly from the cost matrix. This
is because the edge cost for each robot is independent of
all other edges being used. However, MaxNetGap cannot be
calculated this way, as connectivity is determined by what all
robots are doing. Instead, we iteratively simulate the robots
along their proposed paths, and calculate connectivity based
on inter-robot distance and obstacles. We use distance-based
connectivity, but any connectivity function can be used.

IV. SOLUTION TECHNIQUE

To solve problems such as those listed in Section II, we
need a set of solutions that meet the objectives. This then
allows a higher-level planner such as a human operator or
task allocation system to select a solution depending on their
needs. Our solution technique follows several steps. Firstly,
paths are found between all relevant locations. A multi-
objective Genetic Algorithm (GA) known as the Primary
GA is applied to produce a number of solutions. Waypoints
are iteratively added and a single-objective Secondary GA is
applied. We refer to this process as a Dual GA.

A. Path-finding

To calculate paths between each vertex (robot start position
or task location), we make use of MATLAB’s Robotics
System Toolbox. A probabilistic roadmap (PRM) is formed,
from which paths between vertices are calculated and stored
in a path lookup table. Figure 1 shows an of example of
paths between vertices.

B. Primary Genetic Algorithm

A solution is an allocation of tasks that result in all tasks
being completed. A Genetic Algorithm (GA) searches for
solutions by breeding and evolving the existing solutions.
Solutions are encoded as genomes. We represent the genomes
as two-part chromosomes [15], as outlined in Figure 2.

139

Fig. 1. An example of the pathfinding process. White parts are traversable,
and black parts are not. Each vertex (red circle) represents a robot’s start
position or task location. Paths between vertices are calculated using a
probabilistic roadmap (PRM).

Fig. 2. The genetic algorithm representation for the Multiple Travelling
Salesman Problem. The first part specifies task order. The second part
specifies path length. In this example, robot 1 will complete tasks 9, 7,
5, 6, 2. Robot 2 will complete tasks 8, 4. Robot 3 will complete tasks 3, 1.

A grouping of genomes represents a population. Parents
are selected from the population using weighted random
selection, where the fittest are most likely to be selected.
Children are created from their parents using crossover and
mutation functions. The children are then added to the
population as a steady-state process, removing the worst of
the population. The concept is that genes which are the fittest
will survive and breed, and we remove the least fit.

The initial population is created through randomisation, as
well as valid solutions from sequential single-item auctions.
Sequential single-item auctions are quick greedy heuristics
that form solutions through task bidding. We have used a
similar process previously [16].

For crossover, we use the two-part chromosome crossover
(TCX) [17], designed for the mTSP. For mutation, we use
external swap, where two tasks belonging to two robots are
swapped, and path reverse, where a subpath belonging to one
robot is reversed.

The primary GA is multi-objective, so we make use of the
popular NSGA-II [4]. NSGA-II operates by sorting solutions
into Pareto fronts. The first Pareto front contains all solutions
for which there is no other solution that dominates it. A
solution dominates another if it is better for at least one
objective, but not worse for any objective. An example of a
population that has been sorted into Pareto fronts is shown in

TABLE II
THE TUNED PRIMARY GENETIC ALGORITHM PROPERTIES.

Replacement 50%
Crossover Rate 80%
Mutate-External 1/2
Mutate-Reverse 1/2

Robots Tasks Population Iterations

2

5 100 300
15 100 1000
30 100 3000
50 100 10000

3

5 140 1000
15 140 3000
30 140 10000
50 140 20000

4

5 140 1000
15 140 6000
30 140 13000
50 140 30000

Figure 3. Populations are first ranked by which front they are
in, with ties being resolved by crowding distance. Crowding
distance is a measure of uniqueness to similar solutions,
and is used to promote diversity within the population.
The pseudo-code for calculating Pareto fronts and crowding
distances are well described in the original paper [4] and will
not be repeated here. The tuned values for the primary GA
are listed in Table II.

C. Secondary Genetic Algorithm

In some cases, the primary GA is unable to find solutions
with full connectivity. This is discussed in detail in Section
VI. To remedy this, we iteratively add random waypoints,
and apply a single-objective GA for each added waypoint.
For example, consider the solutions in Figure 3. The solu-
tion with the most connectivity (labelled C) has non-zero
MaxNetGap score, indicating that there are times that the
robots are not connected to one another.

As will be discussed in Section VI, we know that as the
number of tasks in the problem increases, the harder it is for
the primary GA to find a solution that maintains connectivity.
This implies that as we add waypoints, finding a solution
that maintains connectivity becomes more difficult. As such,
we do not solve the problem from random initialisation for
each added waypoint. Instead, we tune the secondary GA
to incrementally improve solutions. The population of the
secondary GA is seeded from the solution with the highest
connectivity, and the waypoint is inserted into a random
index for a random robot. Mutation operations are performed
to improve the solutions without searching for brand new
configurations, and no crossover is performed. We use the
mutations: external swap, where two robots swap tasks;
reverse, where a sub-path of a robot is reversed; internal
swap, where two tasks in a path are swapped; and transfer,
where a task is gifted from one robot to another. The tuned
parameters for the secondary GA are listed in Table III.

140

(a)

A

B
C

(b)

Fig. 3. An example solution set for a problem with 3 robots and 30 tasks.
a) Each point in a line (Pareto front) represents a particular solution. b)
robots (large circle) must visit locations (smaller circles). They cannot enter
or communicate over the mountain (black). (A) The most energy efficient
solution found. (B) A balance between energy efficiency and connectivity.
(C) The solution where robots stay most connected so that they can respond
to events.

TABLE III
THE TUNED SECONDARY GENETIC ALGORITHM PROPERTIES.

Population 100
Replacement 50%

Crossover Rate 0%
Mutate-External 1/4
Mutate-Reverse 1/4
Mutate-Internal 1/4
Mutate-Transfer 1/4

Waypoints Searched 50
Iterations PrimaryGA Iterations / 50

Fig. 4. The end of the first Pareto Front. Each point represents a solution,
which has a cost for two objectives on the X and Y axis. The Primary GA
was unable to find a solution that minimised the MaxNetGap objective. The
Secondary GA found new solutions that filled this gap. It is more energy
efficient (SumTime) than the Connected Nearest Neighbour (CNN) heuristic,
and moving robots together as a stack.

D. Summary of Technique

The summary of steps for the Dual-GA are as follows:
1) Generate paths between each vertex pair (robot or task

location), avoiding obstacles.
2) Seed the primary population with heuristics and ran-

domly generated solutions.
3) (NSGA-II) Rank the primary population by Pareto

Front, with crowding distance as the tie-breaker. Select
and duplicate half of the primary population by weight-
ed sampling. Crossover and mutate these solutions
to produce children. Replace the weakest half of the
primary population with the children. Repeat for the
desired number of iterations.

4) Select the solution, s, with the lowest MaxNetGap
score. Repeat for w waypoints:

a) Add a waypoint within the map boundaries.
b) Duplicate s, allocate the waypoint to a random

robot, and use this solution as a seed for the
secondary population. Repeat this until the sec-
ondary population is full.

c) Rank the secondary population by MaxNetGap
score. Select and duplicate half of the secondary
population by weighted sampling. Mutate these
solutions to produce children. Replace the weak-
est half of the secondary population with the chil-
dren. Repeat for the desired number of iterations.

d) Combine the primary and secondary populations.
Rank the combined population by Pareto Front,
removing all solutions that are not in the first
front.

5) Repeat Step 4 until a solution where MaxNetGap
equals zero is found, or until a time limit is reached.

A graphical example of step 1 can be seen in Figure 1, step
3 can be seen in Figure 3, and the final result can be seen in
Figure 4. An example solution that prioritises connectivity
is shown in Figure 5.

141

Fig. 5. Snapshots of robots (large filled circles) completing tasks (small
filled circles) while maintaining connection range with one another (large
thin circles). They cannot move or communicate through the mountain
(black area).

V. TESTS

We alter the number of robots (2 to 5), the number of tasks
(5, 15, 30, 50), and the connection distance (500, 1500, 3000,
6000, 10000 metres). Each scenario is repeated 50 times to
produce an average. This results in 4800 tests, performed
with the University of Adelaide’s high performance comput-
ing cluster, Phoenix.

We compare the results to a Connected Nearest-Neighbour
approach [13], which alternates between phases of task allo-
cation and phases of interim points to maintain connectivity.
We also compare the results to a trivial technique to maintain
connectivity, where all robots visit all tasks by moving
together i.e. stack the robots. Robot stacking is calculated
by solving the mTSP with a single robot, then having all
robots use that path. For example, consider the most energy
efficient solution in Figure 3 (labelled A). All robots could
follow this path together so that they remain connected.

VI. RESULTS

A. MiniMaxNetGap

The primary GA does not always find solutions where
the robots are connected all of the time, i.e. a MaxNetGap

Fig. 6. A plot of the solutions with the smallest MaxNetGap objective
score, from the Primary Genetic Algorithm (GA). The performance scales
with networking distance, as it is simpler for robots to maintain connectivity
when their communication distance is large.

Fig. 7. The MiniMaxNetGap improvement from each added waypoint in
the Secondary Genetic Algorithm (GA). Overall performance is dependent
on networking distance between robots, as it is simpler for robots to maintain
connectivity when their communication distance is large.

score of 0 seconds. For example, in Figure 3, the solution
with the most connectivity (point C) does not lie on the x-
axis. Looking at Figure 6, we can see that the MaxNetGap
score is heavily impacted by the networking distance and the
number of tasks. If the network distance is small (relative to
the 10km area), robots must remain closer together. This
means there are fewer solutions that have full connectivity.
The primary GA has trouble with this, resulting in large
differences in solution quality. The number of tasks also
affects the primary GA MaxNetGap score, but to a lesser
extent. We can see from Figure 6 that as the number of tasks
increases, it becomes more difficult for the primary GA to
find good solutions. However, a low number of tasks limits
the number of ways robots can move.

Adding waypoints, as discussed in Section IV, shows
an improvement in MaxNetGap score for each task added.
In Figure 7, we can see that the improvement is largely
dependent on the network distance. We can also see that
each new waypoint provides diminishing returns.

Looking at Figure 4, the secondary GA has provided
solutions with a greater MaxNetGap score. It also shows two
other techniques, a Connected Nearest-Neighbour approach
(CNN), and a stacking robot approach. The CNN does not
produce a solution with a MaxNetGap score of 0 in this

142

(103 sec)

Fig. 8. Relative performances of the three techniques: Dual GA (ours),
Connected Nearest Neighbour (CNN), and robot stacking. Three objectives
are compared, the longest time between connection (MaxNetGap), the
energy usage (SumTime), and the time taken for robots to return home
(MaxTime).

case. It assumes that when robots start connected and end
connected, the path they follow will keep them connected.
With non-straight paths, this is not the case. The current
problem has obstacles, resulting in non-straight paths be-
tween certain points. Stacking robots, however, results in
100% connectivity because the robots are moving with one
another, but is less energy efficient than the other methods.

Figure 8 illustrates a graphical comparison between CNN,
Dual GA, and robot stacking methods. The technique that
provides the most connectivity is robot stacking, because
all robots move together to complete every task. Dual GA
provides more connectivity than CNN, with the exception
of low connection distances, where Dual GA struggles to
find solutions that maintain connectivity. For the energy
efficiency objective, MiniSumTime, Dual GA uses the least
energy, with the exception of very low number of tasks.
Robot stacking uses the most energy. As for completion time,
MiniMaxTime, robot stacking is slightly faster than CNN,
but Dual GA is substantially faster than the others.

VII. CONCLUSION

The proposed Dual-GA is capable of providing a range of
solutions with different balances between energy efficien-
cy and robot connectivity. The primary GA can struggle
to find solutions with 100% connectivity, so a secondary
GA provides improvements through random placement of
waypoints. Together, they provide a wide range of solutions
for a decision-maker to consider for the Multiple Travelling
Salesman Problem with network connectivity.

VIII. ACKNOWLEDGMENTS

This research was supported by the Phoenix High Perfor-
mance Computing service at the University of Adelaide, an
Australian Government Research Training Program Schol-
arship, and by the Commonwealth of Australia through a
Defence Science Partnerships agreement.

REFERENCES

[1] Jairo R Montoya-Torres, Julin Lpez Franco, Santiago Nieto Isaza,
Heriberto Felizzola Jimnez, and Nilson Herazo-Padilla. A literature re-
view on the vehicle routing problem with multiple depots. Computers
& Industrial Engineering, 79:115–129, 2015.

[2] Kaarthik Sundar and Sivakumar Rathinam. Algorithms for hetero-
geneous, multiple depot, multiple unmanned vehicle path planning
problems. Journal of Intelligent & Robotic Systems, pages 1–14, 2016.

[3] Michail G Lagoudakis, Evangelos Markakis, David Kempe, Pinar
Keskinocak, Anton J Kleywegt, Sven Koenig, Craig A Tovey, Adam
Meyerson, and Sonal Jain. Auction-based multi-robot routing. In
Robotics: Science and Systems, volume 5, pages 343–350. Rome, Italy,
2015.

[4] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[5] Yuan Yan and Yasamin Mostofi. Robotic router formation in real-
istic communication environments. IEEE Transactions on Robotics,
28(4):810–827, 2012.

[6] Yuanteng Pei, Matt W Mutka, and Ning Xi. Connectivity and
bandwidth-aware realtime exploration in mobile robot networks. Wire-
less Communications and Mobile Computing, 13(9):847–863, 2013.

[7] James Stephan, Jonathan Fink, Vijay Kumar, and Alejandro Ribeiro.
Concurrent control of mobility and communication in multirobot
systems. IEEE Transactions on Robotics, 33(5):1248–1254, 2017.

[8] Yiannis Kantaros and Michael M Zavlanos. Global planning for
multi-robot communication networks in complex environments. IEEE
Transactions on Robotics, 32(5):1045–1061, 2016.

[9] Yiannis Kantaros, Meng Guo, and Michael M Zavlanos. Temporal
task planning and intermittent communication control of mobile robot
networks. arXiv preprint arXiv:1706.00765, 2017.

[10] Jacopo Banfi, Alberto Quattrini Li, Nicola Basilico, Ioannis Rekleitis,
and Francesco Amigoni. Asynchronous multirobot exploration under
recurrent connectivity constraints. In Robotics and Automation (ICRA),
2016 IEEE International Conference on, pages 5491–5498. IEEE,
2016.

[11] Victor Spirin, Stephen Cameron, and Julian De Hoog. Time preference
for information in multi-agent exploration with limited communica-
tion. In Conference Towards Autonomous Robotic Systems, pages 34–
45. Springer, 2013.

[12] Jacopo Banfi, Alberto Quattrini Li, Nicola Basilico, and Francesco
Amigoni. Communication-constrained multirobot exploration: Short
taxonomy and comparative results. In Proceedings of the IROS
workshop on on-line decision-making in multi-robot coordination
(DEMUR2015), pages 1–8, 2015.

[13] Yun Wang and Cheng Hu. Moving as a whole: multirobot traveling
problem constrained by connectivity. Turkish Journal of Electrical
Engineering & Computer Sciences, 23(3):769–788, 2015.

[14] Satyanarayana G Manyam, Sivakumar Rathinam, Swaroop Darbha,
David Casbeer, Yongcan Cao, and Phil Chandler. GPS denied UAV
routing with communication constraints. Journal of Intelligent &
Robotic Systems, 84(1-4):691–703, 2016.

[15] Arthur E Carter and Cliff T Ragsdale. A new approach to solving
the multiple traveling salesperson problem using genetic algorithms.
European Journal of Operational Research, 175(1):246–257, 2006.

[16] Nick Sullivan, Steven Grainger, and Ben Cazzolato. Algorithms for
multi-robot routing with adaptive heterogeneity. Submitted to Journal
of Heuristics, 2018.

[17] Shuai Yuan, Bradley Skinner, Shoudong Huang, and Dikai Liu. A
new crossover approach for solving the multiple travelling salesmen
problem using genetic algorithms. European Journal of Operational
Research, 228(1):72–82, 2013.

143

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Background
	1.1 Multi-Robot Systems
	1.2 Task Allocation
	1.3 Localisation
	1.4 Research Aims
	1.5 References

	2 Background Theory and Literature Review
	2.1 Introduction
	2.2 Graph Theory
	2.3 Task Allocation
	2.3.1 Algorithms
	2.3.2 Heterogeneity

	2.4 Collaborative Localisation
	2.4.1 Extended Kalman Filter
	2.4.2 Handling Data Incest
	2.4.3 Localisation with Allocation

	2.5 Research Gaps and Objectives
	2.6 References

	3 Fast Task Allocation for Heterogeneous Robots
	3.1 Introduction
	3.2 Problem Definition
	3.3 Multi-Robot Task Allocation Algorithms
	3.4 Partial Knowledge
	3.5 Simulation
	3.6 Experiments
	3.7 Results - full knowledge
	3.8 Results - partial knowledge
	3.9 Algorithm Limitations
	3.10 Conclusion
	3.11 References

	4 Task Allocation for Robots with Adaptive Heterogeneity
	4.1 Introduction
	4.2 Dynamic Heterogeneity mTSP Definition
	4.3 Transformation
	4.4 Sequential Auction
	4.5 Genetic Algorithm
	4.6 Worst Case Analysis
	4.7 Experiments
	4.8 Computational Results
	4.9 Benchmark Tests
	4.10 Conclusion
	4.11 References

	5 Analysing Collaborative Localisation Properties
	5.1 Introduction
	5.2 Approach
	5.3 Results
	5.4 Experimental System
	5.5 Experimental Results
	5.6 Multivariate Performance
	5.7 Discussion
	5.8 Conclusion

	6 Task Allocation with Collaborative Localisation
	6.1 Introduction
	6.2 Problem Definition
	6.3 Algorithm
	6.4 Results
	6.5 Computation Time
	6.6 Physical Implementation
	6.7 Conclusion
	6.8 References

	7 Summary and Conclusion
	Appendix A Multi-Robot Hardware Platform
	A.1 Introduction
	A.2 Applications
	A.3 Physical Design
	A.4 Simulation Design
	A.5 Localisation
	A.6 Vehicle Routing
	A.7 Conclusion

	Appendix B Task Allocation with Network Connectivity
	B.1 Introduction
	B.2 Problem Statement
	B.3 Objective Functions
	B.4 Solution Technique
	B.5 Summary of Technique
	B.6 Tests
	B.7 Results
	B.8 Conclusion

